Advertisement

Breast Cancer Research and Treatment

, Volume 147, Issue 1, pp 25–37 | Cite as

ERK1/2 is related to oestrogen receptor and predicts outcome in hormone-treated breast cancer

  • Dena A. Jerjees
  • M. Alabdullah
  • Methaq Alkaabi
  • Rezvan Abduljabbar
  • Abir Muftah
  • Chris Nolan
  • Andrew R. Green
  • Ian O. Ellis
  • Emad A. Rakha
Preclinical study

Abstract

The extracellular-regulated kinase (ERK) 1/2 is one of the members of the mitogen-activated protein kinases (MAPKs). MAPKs are transduction proteins that play a role in controlling diverse cellular functions including proliferation and survival. In breast cancer (BC), MAPKs are involved in oestrogen receptor (ER) and HER2 pathways. This study aims to assess the biological and clinical significance of ERK1/2 protein expression in BC. Immunohistochemistry was used to assess the expression of both total (ERK1/2) and phospholyated (p ERK1/2) ERK1/2 proteins in a large and well-characterised series of early stage BC (n = 1300) using tissue microarray technology. ERK1/2 expression was cytoplasmic, while p-ERK1/2 was observed in the nucleus (N-p-ERK1/2) and/or cytoplasm (C-p-ERK1/2). Both ERK1/2 and p-ERK1/2 were positiviely associated with markers of good prognosis including smaller size, lower grade, expression of hormone receptor and ER-related proteins and negatively associated with HER2, HER4, KI67 and p53. Outcome analysis showed an association between N-p-ERK1/2 and better outcome. In tamoxifen-treated cases, ERK1/2 expression was an independent prognostic marker of longer survival. ERK1/2 and p-ERK1/2 were associated with good prognosis. Importantly, positivity of ERK1/2 is independently associated with better outcome in tamoxifen-treated cases.

Keywords

Breast carcinoma Molecular features MAPK/ERK pathway Immunohistochemistry 

Notes

Acknowledgments

Dena A Jerjees is funded by the higher committee of educational development in Iraq.

Conflict of interest

None.

Ethical standards

This study was approved by the Nottingham Research Ethics Committee.

References

  1. 1.
    Tran P, Fentiman IS (2009) Better treatment for breast cancer in older patients. Expert Rev Anticancer Ther 9(8):1081–1090CrossRefPubMedGoogle Scholar
  2. 2.
    Shannon AM, Telfer BA, Smith PD, Babur M, Logie A, Wilkinson RW, Debray C, Stratford IJ, Williams KJ, Wedge SR (2009) The mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) enhances the radiation responsiveness of lung and colorectal tumor xenografts. Clin Cancer Res 15(21):6619–6629CrossRefPubMedGoogle Scholar
  3. 3.
    Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143CrossRefPubMedGoogle Scholar
  4. 4.
    Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18(3):664–674CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773(8):1161–1176CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10(1 Pt 2):331S–336SCrossRefPubMedGoogle Scholar
  7. 7.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    English JM, Vanderbilt CA, Xu S, Marcus S, Cobb MH (1995) Isolation of MEK5 and differential expression of alternatively spliced forms. J Biol Chem 270(48):28897–28902CrossRefPubMedGoogle Scholar
  9. 9.
    Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H et al (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241):1491–1494CrossRefPubMedGoogle Scholar
  10. 10.
    Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15(9):2174–2183PubMedCentralPubMedGoogle Scholar
  11. 11.
    Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10(12):2435–2446PubMedGoogle Scholar
  12. 12.
    Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80(2):239–256CrossRefPubMedGoogle Scholar
  13. 13.
    Milde-Langosch K, Bamberger AM, Rieck G, Grund D, Hemminger G, Muller V, Loning T (2005) Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer 92(12):2206–2215CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277(1):2–21CrossRefPubMedGoogle Scholar
  15. 15.
    Subramaniam S, Unsicker K (2010) ERK and cell death: eRK1/2 in neuronal death. FEBS J 277(1):22–29CrossRefPubMedGoogle Scholar
  16. 16.
    Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10(6):459–472CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235CrossRefPubMedGoogle Scholar
  19. 19.
    Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ, Robertson JF, Blamey R, Gee J, Nicholson RI et al (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44(1):73–83CrossRefPubMedGoogle Scholar
  20. 20.
    Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF, Macmillan D, Blamey RW, Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350CrossRefPubMedGoogle Scholar
  21. 21.
    Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO (2007) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32CrossRefPubMedGoogle Scholar
  22. 22.
    Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310CrossRefPubMedGoogle Scholar
  23. 23.
    Habashy HO, Rakha EA, Aleskandarany M, Ahmed MA, Green AR, Ellis IO, Powe DG (2011) FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat 129(1):11–21CrossRefPubMedGoogle Scholar
  24. 24.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10(21):7252–7259CrossRefPubMedGoogle Scholar
  25. 25.
    Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D (2001) Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15(8):1344–1359PubMedGoogle Scholar
  26. 26.
    Brinkman JA, El-Ashry D (2009) ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia 14(1):67–78CrossRefPubMedGoogle Scholar
  27. 27.
    Nakopoulou L, Mylona E, Rafailidis P, Alexandrou P, Giannopoulou I, Keramopoulos A (2005) Effect of different ERK2 protein localizations on prognosis of patients with invasive breast carcinoma. APMIS 113(10):693–701CrossRefPubMedGoogle Scholar
  28. 28.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic raf. Genes Dev 12(19):2997–3007CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Olsen CL, Gardie B, Yaswen P, Stampfer MR (2002) Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21(41):6328–6339CrossRefPubMedGoogle Scholar
  31. 31.
    Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665CrossRefPubMedGoogle Scholar
  32. 32.
    Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724CrossRefPubMedGoogle Scholar
  33. 33.
    Kumagai Y, Naoki H, Nakasyo E, Kamioka Y, Kiyokawa E, Matsuda M: Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice. Oncogene 2014Google Scholar
  34. 34.
    Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC (2002) Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res 8(6):1747–1753PubMedGoogle Scholar
  35. 35.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183PubMedGoogle Scholar
  36. 36.
    Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11):827–837CrossRefPubMedGoogle Scholar
  37. 37.
    Harding A, Tian T, Westbury E, Frische E, Hancock JF (2005) Subcellular localization determines MAP kinase signal output. Curr Biol 15(9):869–873CrossRefPubMedGoogle Scholar
  38. 38.
    Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11(6):414–426CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118(Pt 14):2997–3002CrossRefPubMedGoogle Scholar
  40. 40.
    Shankaran H, Wiley HS (2010) Oscillatory dynamics of the extracellular signal-regulated kinase pathway. Curr Opin Genet Dev 20(6):650–655CrossRefPubMedGoogle Scholar
  41. 41.
    Sivaraman VS, Wang H, Nuovo GJ, Malbon CC (1997) Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest 99(7):1478–1483CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Salh B, Marotta A, Matthewson C, Ahluwalia M, Flint J, Owen D, Pelech S (1999) Investigation of the Mek-MAP kinase-Rsk pathway in human breast cancer. Anticancer Res 19(1b):731–740PubMedGoogle Scholar
  43. 43.
    Pages G, Milanini J (2000) Richard DE, Berra E, Gothie E, Vinals F, Pouyssegur J: signaling angiogenesis via p42/p44 MAP kinase cascade. Ann NY Acad Sci 902:187–200CrossRefPubMedGoogle Scholar
  44. 44.
    Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA (2007) EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J Cell Sci 120(Pt 20):3688–3699CrossRefPubMedGoogle Scholar
  45. 45.
    Price DJ, Avraham S, Feuerstein J, Fu Y, Avraham HK (2002) The invasive phenotype in HMT-3522 cells requires increased EGF receptor signaling through both PI 3-kinase and ERK 1,2 pathways. Cell Commun Adhes 9(2):87–102CrossRefPubMedGoogle Scholar
  46. 46.
    Busch S, Ryden L, Stal O, Jirstrom K, Landberg G (2012) Low ERK phosphorylation in cancer-associated fibroblasts is associated with tamoxifen resistance in pre-menopausal breast cancer. PLoS ONE 7(9):e45669CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dena A. Jerjees
    • 1
    • 2
  • M. Alabdullah
    • 3
  • Methaq Alkaabi
    • 1
  • Rezvan Abduljabbar
    • 1
  • Abir Muftah
    • 1
  • Chris Nolan
    • 1
  • Andrew R. Green
    • 1
  • Ian O. Ellis
    • 1
  • Emad A. Rakha
    • 1
  1. 1.Department of Histopathology and Divison of Cancer and Stem Cells, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City HospitalNottinghamUK
  2. 2.Department of PathologyMosul School of MedicineMosulIraq
  3. 3.Department of SurgerySchool of MedicineMosulIraq

Personalised recommendations