Breast Cancer Research and Treatment

, Volume 144, Issue 3, pp 551–560 | Cite as

Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition

  • Donald P. Taylor
  • Amanda Clark
  • Sarah Wheeler
  • Alan Wells
Preclinical study


Nearly half of breast carcinoma metastases will become clinically evident five or more years after primary tumor ablation. This implies that metastatic cancer cells survived over an extended timeframe without emerging as detectable nodules. The liver is a common metastatic destination, whose parenchymal hepatocytes have been shown to impart a less invasive, dormant phenotype on metastatic cancer cells. We investigated whether hepatic nonparenchymal cells (NPCs) contributed to metastatic breast cancer cell outgrowth and a mesenchymal phenotypic shift indicative of emergence. Co-culture experiments of primary human hepatocytes, NPCs or endothelial cell lines (TMNK-1 or HMEC-1) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Exposure of carcinoma cells to NPC-conditioned medium isolated soluble factors contributing to outgrowth. To elucidate outgrowth mechanism, epidermal growth factor receptor (EGFR) inhibition co-culture experiments were performed. Flow cytometry analyses and immunofluorescence staining were conducted to quantify breast cancer cell outgrowth and phenotype, respectively. Outgrowth of the MDA-MB-231 cells within primary NPC co-cultures was substantially greater than in hepatocyte-only or hepatocyte+NPC co-cultures. MCF-7 cells co-cultured with human NPCs as well as with the endothelial NPC subtypes grew out significantly more than controls. MCF-7 cells underwent a mesenchymal shift as indicated by spindle morphology, membrane clearance of E-cadherin, and p38 nuclear translocation when in HMEC-1 co-culture. HMEC-1-conditioned medium induced similar results suggesting that secretory factors are responsible for this transition while blocking EGFR blunted the MCF-7 outgrowth. We conclude that NPCs in the metastatic hepatic niche secrete factors that can induce a partial mesenchymal shift in epithelial breast cancer cells thus initiating outgrowth, and that this is in part mediated by EGFR activation. These data suggest that changes in the parenchymal cell and NPC ratios (or activation status) in the liver metastatic microenvironment may contribute to emergence from metastatic dormancy.


Mesenchymal to epithelial reverting transition Epithelial to mesenchymal transition Nonparenchymal cells Hepatic microenvironment Metastatic dormancy Metastatic emergence Mesenchymal to epithelial transition 



Mesenchymal to epithelial reverting transition


Epithelial to mesenchymal transition


Mesenchymal to epithelial transition


Nonparenchymal cells


Epidermal growth factor receptor


Hepatocyte maintenance medium



These studies were supported by Grants from the NIH NCATS program (TR000496) and by a Merit Award from the VA. The authors thank members of Wells laboratory and Linda Griffith and her laboratory members at MIT.

Conflict of interest

The authors have no conflicts to declare.


  1. 1.
    Demicheli R (2001) Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11(4):297–306. doi: 10.1006/scbi 2001.0385PubMedCrossRefGoogle Scholar
  2. 2.
    Taylor DP, Wells JZ, Savol A, Chennubhotla C, Wells A (2013) Modeling boundary conditions for balanced proliferation in metastatic latency. Clin Cancer Res 19(5):1063–1070. doi: 10.1158/1078-0432.CCR-12-3180 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Aguirre-Ghiso JA (2006) The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5(16):1740–1743PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750PubMedCrossRefGoogle Scholar
  5. 5.
    Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179. doi: 10.1186/1476-4598-9-179 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gunasinghe NP, Wells A, Thompson EW, Hugo HJ (2012) Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. doi: 10.1007/s10555-012-9377-5 PubMedGoogle Scholar
  7. 7.
    Yates CC, Shepard CR, Stolz DB, Wells A (2007) Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 96(8):1246–1252. doi: 10.1038/sj.bjc.6603700 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kassis J, Lauffenburger DA, Turner T, Wells A (2001) Tumor invasion as dysregulated cell motility. Semin Cancer Biol 11(2):105–117. doi: 10.1006/scbi.2000.0362S1044-579X(00)90362-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108(29):11930–11935. doi: 10.1073/pnas.1103345108 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5(1):19–28. doi: 10.1007/s12307-011-0085-4 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5(6):R217–R222. doi: 10.1186/bcr651 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chao Y, Wu Q, Shepard C, Wells A (2012) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39–50. doi: 10.1007/s10585-011-9427-3 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP (2011) Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 22(14):2423–2435. doi: 10.1091/mbc.E11-04-0306 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168PubMedGoogle Scholar
  15. 15.
    Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII, 1–151Google Scholar
  16. 16.
    Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300. doi: 10.1002/jcp.21172 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. doi: 10.1038/nrm1489nrm1489 PubMedCrossRefGoogle Scholar
  18. 18.
    Michalopoulos G, Cianciulli HD, Novotny AR, Kligerman AD, Strom SC, Jirtle RL (1982) Liver regeneration studies with rat hepatocytes in primary culture. Cancer Res 42(11):4673–4682PubMedGoogle Scholar
  19. 19.
    Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 43(6):2704–2711PubMedGoogle Scholar
  20. 20.
    Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa T, Totsugawa T, Noguchi H, Yamamoto S, Stolz DB, Tanaka N, Leboulch P, Kobayashi N (2004) Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 77(9):1357–1365PubMedCrossRefGoogle Scholar
  21. 21.
    Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Investig Dermatol 99(6):683–690PubMedCrossRefGoogle Scholar
  22. 22.
    Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15(8):369–379. doi: 10.1016/j.molmed.2009.06.005 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19(3):276–277. doi: 10.1038/nm.3120 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA (2006) Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5(7):729–735PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gong X, Ming X, Deng P, Jiang Y (2010) Mechanisms regulating the nuclear translocation of p38 MAP kinase. J Cell Biochem 110(6):1420–1429. doi: 10.1002/jcb.22675 PubMedCrossRefGoogle Scholar
  26. 26.
    Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25(3):409–416. doi: 10.1007/s10555-006-9005-3 PubMedCrossRefGoogle Scholar
  27. 27.
    De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18(9):1016–1018. doi: 10.1096/fj.03-1110fje PubMedGoogle Scholar
  28. 28.
    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. doi: 10.1056/NEJMoa022152 PubMedCrossRefGoogle Scholar
  29. 29.
    Rubio N, Espana L, Fernandez Y, Blanco J, Sierra A (2001) Metastatic behavior of human breast carcinomas overexpressing the Bcl-x(L) gene: a role in dormancy and organospecificity. Lab Investig 81(5):725–734PubMedCrossRefGoogle Scholar
  30. 30.
    Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A (2007) PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26(21):3020–3026. doi: 10.1038/sj.onc.1210115 PubMedCrossRefGoogle Scholar
  31. 31.
    Davidson NE, Visvanathan K, Emens L (2003) New findings about endocrine therapy for breast cancer. Breast 12(6):368–372PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Donald P. Taylor
    • 1
    • 2
  • Amanda Clark
    • 2
  • Sarah Wheeler
    • 2
  • Alan Wells
    • 1
    • 2
    • 3
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of PathologyUniversity of Pittsburgh and Pittsburgh VA Health SystemPittsburghUSA
  3. 3.University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations