Breast Cancer Research and Treatment

, Volume 141, Issue 3, pp 515–522 | Cite as

Identification of two novel BRCA1-partner genes in the DNA double-strand break repair pathway

  • Chiara Guglielmi
  • Iacopo Cerri
  • Monica Evangelista
  • Anita Collavoli
  • Mariella Tancredi
  • Paolo Aretini
  • Maria Adelaide Caligo
Brief Report


M1775R and A1789T are two missense variants located within the BRCT domains of BRCA1 gene. The M1775R is a known deleterious variant, while the A1789T is an unclassified variant that has been analyzed and classified as probably deleterious for the first time by our group. In a previous study, we described the expression profile of HeLa G1 cells transfected with the two variants and we found that they altered molecular mechanisms critical for cell proliferation and genome integrity. Considering that the mutations in the BRCA1 C terminus (BRCT) domains are associated to a phenotype with an altered ability in the DNA double-strand break repair, we chose three of the genes previously identified, EEF1E1, MRE11A, and OBFC2B, to be tested for an homologous recombination (HR) in vitro assay. For our purpose, we performed a gene expression knockdown by siRNA transfection in HeLa cells, containing an integrated recombination substrate (hprtDRGFP), for each of the target genes included BRCA1. The knockdown of BRCA1, OBFC2B, MRE11A, and EEF1E1 reduces the HR rate, respectively, of 97.6, 28.6, 41.8, and 42.3 % compared to cells transfected with a scrambled negative control duplex and all these differences are statistically significant (P < 0.05; Kruskal–Wallis test). Finally, we analyzed the effect of target gene depletion both on HR that on cell survival after DNA-damage induction by ionizing radiation. The clonogenic assay showed that the down-regulation of the target genes reduced the cell survival, but the effect on the HR, is not evident. Only the BRCA1-siRNA confirmed the inhibition effect on HR. Overall these results confirmed the involvement of MRE11A in the HR pathway and identified two new genes, OBFC2B and EEF1E1, which according to these data and the knowledge obtained from literature, might be involved in BRCA1-pathway.


Homologous recombination BRCA1-partners genes OBFC2B EEF1E1 Breast cancer Functional assay 



The authors wish to thank Dr. Michele Menicagli for the use of fluorescent microscopy and Dr. Simone Pacini for the use of FACS. Moreover, the authors are grateful to Dr. Luigi Tana for his technical help in the cell exposure to ionizing radiation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All the the experiments comply with the current laws of the country in which they were performed (Italy).


  1. 1.
    Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279:31251–31258PubMedCrossRefGoogle Scholar
  2. 2.
    Caestecker KV, Van de Walle GR (2013) The role of BRCA1 in DNA double-strand repair: past and present. Exp Cell Res 319(5):575–587. doi: 10.1016/j.yexcr.2012.11.013 PubMedCrossRefGoogle Scholar
  3. 3.
    Chen L, Nievera CJ, Lee AY, Wu X (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283:7713–7720PubMedCrossRefGoogle Scholar
  4. 4.
    Zhong Q, Boyer TG, Chen PL, Lee WH (2002) Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 62:3966–3970PubMedGoogle Scholar
  5. 5.
    Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, Warrington JA, King MC (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci USA 99:7560–7565PubMedCrossRefGoogle Scholar
  6. 6.
    Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatinmediated silencing. Nature 477:179–184PubMedCrossRefGoogle Scholar
  7. 7.
    Baer R, Ludwig T (2002) The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev 12:86–91PubMedCrossRefGoogle Scholar
  8. 8.
    Linger RJ, Kruk PA (2010) BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications. FEBS J 277:3086–3096PubMedCrossRefGoogle Scholar
  9. 9.
    Rodriguez M, Yu X, Chen J, Songyang Z (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278:52914–52918PubMedCrossRefGoogle Scholar
  10. 10.
    Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin CS, deRooij DG, Hirsch S, Ravi K, Hicks JB, Szabolcs M, Jasin M, Baer R, Ludwig T (2011) BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334:525–528PubMedCrossRefGoogle Scholar
  11. 11.
    Millot GA, Carvalho MA, Caputo SM, Vreeswijk MP, Brown MA, Webb M, Rouleau E, Neuhausen SL, Hansen Tv, Galli A, Brandão RD, Blok MJ, Velkova A, Couch FJ, Monteiro AN; ENIGMA Consortium Functional Assay Working Group (2012) A guide for functional analysis of BRCA1 variants of uncertain significance. Hum Mutat 33(11):1526–1537. doi:  10.1002/humu.22150 Google Scholar
  12. 12.
    Iofrida C, Melissari E, Mariotti V, Guglielmi C, Guidugli L, Caligo MA, Pellegrini S (2012) Effects on human transcriptome of mutated BRCA1 BRCT domain: a microarray study. BMC Cancer 12:207. doi: 10.1186/1471-2407-12-207 PubMedCrossRefGoogle Scholar
  13. 13.
    Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O, Shin DS, Groocock LM, Cahill D, Hitomi C, Guenther G, Moiani D, Carney JP, Russell P, Tainer JA (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135:97–109. doi: 10.1016/j.cell.2008.08.017 PubMedCrossRefGoogle Scholar
  14. 14.
    Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306. doi: 10.1016/j.dnarep.2010.10.001 CrossRefGoogle Scholar
  15. 15.
    Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, Takeda S, Hay RT, Gautier J, West SC, Paull TT, Pandita TK, White MF, Khanna KK (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453(7195):677–681. doi: 10.1038/nature06883 PubMedCrossRefGoogle Scholar
  16. 16.
    Huang J, Gong Z, Ghosal G, Chen J (2009) SOSS complexes participate in the maintenance of genomic stability. Mol Cell 35(3):384–393. doi: 10.1016/j.molcel.2009.06.011 PubMedCrossRefGoogle Scholar
  17. 17.
    Xu S, Wu Y, Chen Q, Cao J, Hu K, Tang J, Sang Y, Lai F, Wang L, Zhang R, Li SP, Zeng YX, Yin Y, Kang T (2012) hSSB1 regulates both the stability and the transcriptional activity of p53. Cell Res 23(3):423–435. doi: 10.1038/cr.2012.162 PubMedCrossRefGoogle Scholar
  18. 18.
    Xu S, Feng Z, Zhang M, Wu Y, Sang Y, Xu H, Lv X, Hu K, Cao J, Zhang R, Chen L, Liu M, Yun JP, Zeng YX, Kang T (2011) hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas. Oncogene 30(19):2219–2229. doi: 10.1038/onc.2010.596 PubMedCrossRefGoogle Scholar
  19. 19.
    Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, Oh YS, Han JM, Ku MJ, Lee SY, Kim S (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci USA 108(49):19635–19640. doi: 10.1073/pnas.1103922108 PubMedCrossRefGoogle Scholar
  20. 20.
    Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120(2):209–221PubMedCrossRefGoogle Scholar
  21. 21.
    Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24(21):9305–9316PubMedCrossRefGoogle Scholar
  22. 22.
    Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12:3831–3842PubMedCrossRefGoogle Scholar
  23. 23.
    Guidugli L, Rugani C, Lombardi G, Aretini P, Galli A, Caligo MA (2011) A recombination-based method to characterize human BRCA1 missense variants. Breast Cancer Res Treat 125(1):265–272. doi: 10.1007/s10549-010-1112-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Scully R, Xie A, Nagaraju G (2004) Molecular functions of BRCA1 in the DNA damage response. Cancer Biol Ther 3(6):521–527PubMedGoogle Scholar
  25. 25.
    Richard DJ, Cubeddu L, Urquhart AJ, Bain A, Bolderson E, Menon D, White MF, Khanna KK (2011) hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity. Nucleic Acids Res 39(9):3643–3651. doi: 10.1093/nar/gkq1340 PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23(5):687–696PubMedCrossRefGoogle Scholar
  27. 27.
    Kim SS, Hur SY, Kim YR, Yoo NJ, Lee SH (2011) Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori 97(3):380–385. doi: 10.1700/912.10038 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chiara Guglielmi
    • 1
  • Iacopo Cerri
    • 1
  • Monica Evangelista
    • 2
  • Anita Collavoli
    • 1
  • Mariella Tancredi
    • 1
  • Paolo Aretini
    • 3
  • Maria Adelaide Caligo
    • 1
  1. 1.Section of Genetic OncologyUniversity Hospital and University of PisaPisaItaly
  2. 2.Laboratory of Molecular and Gene TherapyInstitute of Clinical Physiology, CNRPisaItaly
  3. 3.Fondazione Pisana per la Scienza OnlusPisaItaly

Personalised recommendations