Breast Cancer Research and Treatment

, Volume 140, Issue 3, pp 505–517 | Cite as

HIF-1 is involved in the negative regulation of AURKA expression in breast cancer cell lines under hypoxic conditions

  • Daniele Fanale
  • Viviana Bazan
  • Lidia Rita Corsini
  • Stefano Caruso
  • Lavinia Insalaco
  • Marta Castiglia
  • Giuseppe Cicero
  • Giuseppe Bronte
  • Antonio Russo
Preclinical Study


Numerous microarray-based gene expression studies performed on several types of solid tumors revealed significant changes in key genes involved in progression and regulation of the cell cycle, including AURKA that is known to be overexpressed in many types of human malignancies. Tumor hypoxia is associated with poor prognosis in several cancer types, including breast cancer (BC). Since hypoxia is a condition that influences the expression of many genes involved in tumorigenesis, proliferation, and cell cycle regulation, we performed a microarray-based gene expression analysis in order to identify differentially expressed genes in BC cell lines exposed to hypoxia. This analysis showed that hypoxia induces a down-regulation of AURKA expression. Although hypoxia is a tumor feature, the molecular mechanisms that regulate AURKA expression in response to hypoxia in BC are still unknown. For the first time, we demonstrated that HIF-1 activation downstream of hypoxia could drive AURKA down-regulation in BC cells. In fact, we found that siRNA-mediated knockdown of HIF-1α significantly reduces the AURKA down-regulation in BC cells under hypoxia. The aim of our study was to obtain new insights into AURKA transcriptional regulation in hypoxic conditions. Luciferase reporter assays showed a reduction of AURKA promoter activity in hypoxia. Unlike the previous findings, we hypothesize a new possible mechanism where HIF-1, rather than inducing transcriptional activation, could promote the AURKA down-regulation via its binding to hypoxia-responsive elements into the proximal region of the AURKA promoter. The present study shows that hypoxia directly links HIF-1 with AURKA expression, suggesting a possible pathophysiological role of this new pathway in BC and confirming HIF-1 as an important player linking an environmental signal to the AURKA promoter. Since AURKA down-regulation overrides the estrogen-mediated growth and chemoresistance in BC cells, these findings could be important for the development of new possible therapies against BC.


AURKA Breast cancer Cell cycle HIF-1α Hypoxia 


Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws.

Supplementary material

10549_2013_2649_MOESM1_ESM.xls (83 kb)
Table S1 Pattern of common differentially expressed genes in breast cancer cell lines in response to hypoxia (XLS 83 kb)
10549_2013_2649_MOESM2_ESM.xls (28 kb)
Table S2 DEGs involved in cell cycle regulation pathway (XLS 28 kb)
10549_2013_2649_MOESM3_ESM.xls (24 kb)
Table S3 DEGs involved in HIF-1a network (XLS 24 kb)
10549_2013_2649_MOESM4_ESM.xls (23 kb)
Table S4 DEGs involved in AURKA signaling pathway (XLS 23 kb)


  1. 1.
    Lech R, Przemyslaw O (2011) Epidemiological models for breast cancer risk estimation. Ginekol Pol 82(6):451–454PubMedGoogle Scholar
  2. 2.
    Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28(20):3366–3379. doi: 10.1200/JCO.2009.25.4011 PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi: 10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  4. 4.
    Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000. doi: 10.1091/mbc.02-02-0030 PubMedCrossRefGoogle Scholar
  5. 5.
    Liu J, Campen A, Huang S, Peng SB, Ye X, Palakal M, Dunker AK, Xia Y, Li S (2008) Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data. BMC Med Genomics 1:39. doi: 10.1186/1755-8794-1-39 PubMedCrossRefGoogle Scholar
  6. 6.
    Golias CH, Charalabopoulos A, Charalabopoulos K (2004) Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 58(12):1134–1141PubMedCrossRefGoogle Scholar
  7. 7.
    Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226(2):352–364. doi: 10.1002/path.3022 PubMedCrossRefGoogle Scholar
  8. 8.
    Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5(1):1–10. doi: 10.1158/1541-7786.MCR-06-0208 PubMedCrossRefGoogle Scholar
  9. 9.
    Vader G, Lens SM (2008) The aurora kinase family in cell division and cancer. Biochim Biophys Acta 1786(1):60–72. doi: 10.1016/j.bbcan.2008.07.003 PubMedGoogle Scholar
  10. 10.
    Barr AR, Gergely F (2007) Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120(Pt 17):2987–2996. doi: 10.1242/jcs.013136 PubMedCrossRefGoogle Scholar
  11. 11.
    El-Rifai W, Frierson HF Jr, Harper JC, Powell SM, Knuutila S (2001) Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92(6):832–838. doi: 10.1002/ijc.1264 PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59(9):2041–2044PubMedGoogle Scholar
  13. 13.
    Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, Jiang F, Johnston D, Grossman HB, Ruifrok AC, Katz RL, Brinkley W, Czerniak B (2002) Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94(17):1320–1329PubMedCrossRefGoogle Scholar
  14. 14.
    Klein A, Flugel D, Kietzmann T (2008) Transcriptional regulation of serine/threonine kinase-15 (STK15) expression by hypoxia and HIF-1. Mol Biol Cell 19(9):3667–3675. doi: 10.1091/mbc.E08-01-0042 PubMedCrossRefGoogle Scholar
  15. 15.
    Wu CC, Yang TY, Yu CT, Phan L, Ivan C, Sood AK, Hsu SL, Lee MH (2012) p53 negatively regulates aurora A via both transcriptional and posttranslational regulation. Cell Cycle 11(18):3433–3442. doi: 10.4161/cc.21732 PubMedCrossRefGoogle Scholar
  16. 16.
    Lehman NL, O’Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL, Ecsedy JA, Poisson LM (2012) Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 11(3):489–502. doi: 10.4161/cc.11.3.18996 PubMedCrossRefGoogle Scholar
  17. 17.
    Agnese V, Bazan V, Fiorentino FP, Fanale D, Badalamenti G, Colucci G, Adamo V, Santini D, Russo A (2007) The role of aurora-A inhibitors in cancer therapy. Ann Oncol 18(Suppl 6):47–52. doi: 10.1093/annonc/mdm224 Google Scholar
  18. 18.
    Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J (2008) Molecular aspects of tumour hypoxia. Mol Oncol 2(1):41–53. doi: 10.1016/j.molonc.2008.03.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Brown JM (2002) Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 1(5):453–458PubMedGoogle Scholar
  20. 20.
    Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998PubMedCrossRefGoogle Scholar
  21. 21.
    Knowles HJ, Harris AL (2001) Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res 3(5):318–322PubMedCrossRefGoogle Scholar
  22. 22.
    Wenger A, Kowalewski N, Stahl A, Mehlhorn AT, Schmal H, Stark GB, Finkenzeller G (2005) Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs 181(2):80–88. doi: 10.1159/000091097 PubMedCrossRefGoogle Scholar
  23. 23.
    Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6. doi: 10.1186/bcr3087 PubMedCrossRefGoogle Scholar
  24. 24.
    Pugh CW, Gleadle J, Maxwell PH (2001) Hypoxia and oxidative stress in breast cancer. Hypoxia signalling pathways. Breast Cancer Res 3(5):313–317PubMedCrossRefGoogle Scholar
  25. 25.
    Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 13(3):739–749. doi: 10.1677/erc.1.00728 PubMedCrossRefGoogle Scholar
  26. 26.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(suppl 5):10–17. doi: 10.1634/theoncologist.9-90005-10 PubMedCrossRefGoogle Scholar
  27. 27.
    Peurala E, Koivunen P, Bloigu R, Haapasaari KM, Jukkola-Vuorinen A (2012) Expressions of individual PHDs associate with good prognostic factors and increased proliferation in breast cancer patients. Breast Cancer Res Treat 133(1):179–188. doi: 10.1007/s10549-011-1750-5 PubMedCrossRefGoogle Scholar
  28. 28.
    Kaelin WG Jr (2003) The von Hippel-Lindau gene, kidney cancer, and oxygen sensing. J Am Soc Nephrol 14(11):2703–2711PubMedCrossRefGoogle Scholar
  29. 29.
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105(2):659–669. doi: 10.1182/blood-2004-07-2958 PubMedCrossRefGoogle Scholar
  30. 30.
    Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374PubMedCrossRefGoogle Scholar
  31. 31.
    Giatromanolaki A, Harris AL (2001) Tumour hypoxia, hypoxia signaling pathways and hypoxia inducible factor expression in human cancer. Anticancer Res 21(6):4317–4324PubMedGoogle Scholar
  32. 32.
    Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K, Iwase H (2008) Hypoxia-inducible factor 1α is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat 110(3):465–475. doi: 10.1007/s10549-007-9742-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Chen KF, Lai YY, Sun HS, Tsai SJ (2005) Transcriptional repression of human cad gene by hypoxia inducible factor-1α. Nucl Acids Res 33(16):5190–5198. doi: 10.1093/nar/gki839 PubMedCrossRefGoogle Scholar
  34. 34.
    Feige E, Yokoyama S, Levy C, Khaled M, Igras V, Lin RJ, Lee S, Widlund HR, Granter SR, Kung AL, Fisher DE (2011) Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci USA 108(43):E924–E933. doi: 10.1073/pnas.1106351108 PubMedCrossRefGoogle Scholar
  35. 35.
    Ryu K, Park C, Lee Y (2011) Hypoxia-inducible factor 1 alpha represses the transcription of the estrogen receptor alpha gene in human breast cancer cells. Biochem Biophys Res Commun 407(4):831–836. doi: 10.1016/j.bbrc.2011.03.119 PubMedCrossRefGoogle Scholar
  36. 36.
    Federico M, Symonds CE, Bagella L, Rizzolio F, Fanale D, Russo A, Giordano A (2010) R-Roscovitine (seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair. Mol Cancer 9:208. doi: 10.1186/1476-4598-9-208 PubMedCrossRefGoogle Scholar
  37. 37.
    Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. doi: 10.1093/bioinformatics/btg405 PubMedCrossRefGoogle Scholar
  38. 38.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264. doi: 10.1093/biostatistics/4.2.249 PubMedCrossRefGoogle Scholar
  39. 39.
    Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article 3. doi: 10.2202/1544-6115.1027
  40. 40.
    Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284PubMedCrossRefGoogle Scholar
  41. 41.
    Wettenhall JM, Simpson KM, Satterley K, Smyth GK (2006) affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics 22(7):897–899. doi: 10.1093/bioinformatics/btl025 PubMedCrossRefGoogle Scholar
  42. 42.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res 28(1):27–30PubMedCrossRefGoogle Scholar
  43. 43.
    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61(6):409–418. doi: 10.3322/caac.20134 PubMedCrossRefGoogle Scholar
  44. 44.
    van der Groep P, van Diest PJ, Smolders YH, Ausems MG, van der Luijt RB, Menko FH, Bart J, de Vries EG, van der Wall E (2013) HIF-1alpha overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers. PLoS ONE 8(2):e56055. doi: 10.1371/journal.pone.0056055 PubMedCrossRefGoogle Scholar
  45. 45.
    Favaro E, Lord S, Harris AL, Buffa FM (2011) Gene expression and hypoxia in breast cancer. Genome Med 3(8):55. doi: 10.1186/gm271 PubMedCrossRefGoogle Scholar
  46. 46.
    Kunz M, Ibrahim SM (2003) Molecular responses to hypoxia in tumor cells. Mol Cancer 2:23PubMedCrossRefGoogle Scholar
  47. 47.
    Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10(12):825–841. doi: 10.1038/nrc2964 PubMedCrossRefGoogle Scholar
  48. 48.
    Kitajima S, Kudo Y, Ogawa I, Tatsuka M, Kawai H, Pagano M, Takata T (2007) Constitutive phosphorylation of aurora-A on ser51 induces its stabilization and consequent overexpression in cancer. PLoS ONE 2(9):e944. doi: 10.1371/journal.pone.0000944 PubMedCrossRefGoogle Scholar
  49. 49.
    Katayama H, Brinkley WR, Sen S (2003) The aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22(4):451–464PubMedCrossRefGoogle Scholar
  50. 50.
    Wang LH, Xiang J, Yan M, Zhang Y, Zhao Y, Yue CF, Xu J, Zheng FM, Chen JN, Kang Z, Chen TS, Xing D, Liu Q (2010) The mitotic kinase aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res 70(22):9118–9128. doi: 10.1158/0008-5472.CAN-10-1246 PubMedCrossRefGoogle Scholar
  51. 51.
    Yang H, He L, Kruk P, Nicosia SV, Cheng JQ (2006) Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 119(10):2304–2312. doi: 10.1002/ijc.22154 PubMedCrossRefGoogle Scholar
  52. 52.
    Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X, Harten SK, Shukla D, Maxwell PH, Pei D, Esteban MA (2010) VHL inactivation induces HEF1 and aurora kinase A. J Am Soc Nephrol 21(12):2041–2046. doi: 10.1681/ASN.2010040345 PubMedCrossRefGoogle Scholar
  53. 53.
    Lee HH, Zhu Y, Govindasamy KM, Gopalan G (2008) Downregulation of aurora-A overrides estrogen-mediated growth and chemoresistance in breast cancer cells. Endocr Relat Cancer 15(3):765–775. doi: 10.1677/ERC-07-0213 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniele Fanale
    • 1
  • Viviana Bazan
    • 1
  • Lidia Rita Corsini
    • 1
  • Stefano Caruso
    • 1
  • Lavinia Insalaco
    • 1
  • Marta Castiglia
    • 1
  • Giuseppe Cicero
    • 1
  • Giuseppe Bronte
    • 1
  • Antonio Russo
    • 1
  1. 1.Section of Medical Oncology, Department of Surgical, Oncological and Stomatological SciencesUniversity of PalermoPalermoItaly

Personalised recommendations