Breast Cancer Research and Treatment

, Volume 140, Issue 2, pp 427–434 | Cite as

The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk

  • Shaneda Warren Andersen
  • Amy Trentham-Dietz
  • Ronald E. Gangnon
  • John M. Hampton
  • Jonine D. Figueroa
  • Halcyon G. Skinner
  • Corinne D. Engelman
  • Barbara E. Klein
  • Linda J. Titus
  • Polly A. Newcomb


We evaluated whether 13 single nucleotide polymorphisms (SNPs) identified in genome-wide association studies interact with one another and with reproductive and menstrual risk factors in association with breast cancer risk. DNA samples and information on parity, breastfeeding, age at menarche, age at first birth, and age at menopause were collected through structured interviews from 1,484 breast cancer cases and 1,307 controls who participated in a population-based case–control study conducted in three US states. A polygenic score was created as the sum of risk allele copies multiplied by the corresponding log odds estimate. Logistic regression was used to test the associations between SNPs, the score, reproductive and menstrual factors, and breast cancer risk. Nonlinearity of the score was assessed by the inclusion of a quadratic term for polygenic score. Interactions between the aforementioned variables were tested by including a cross-product term in models. We confirmed associations between rs13387042 (2q35), rs4973768 (SLC4A7), rs10941679 (5p12), rs2981582 (FGFR2), rs3817198 (LSP1), rs3803662 (TOX3), and rs6504950 (STXBP4) with breast cancer. Women in the score’s highest quintile had 2.2-fold increased risk when compared to women in the lowest quintile (95 % confidence interval: 1.67–2.88). The quadratic polygenic score term was not significant in the model (p = 0.85), suggesting that the established breast cancer loci are not associated with increased risk more than the sum of risk alleles. Modifications of menstrual and reproductive risk factors associations with breast cancer risk by polygenic score were not observed. Our results suggest that the interactions between breast cancer susceptibility loci and reproductive factors are not strong contributors to breast cancer risk.


Epidemiology Reproductive and menstrual factors Breast cancer Breast cancer susceptibility loci 



Confidence interval


Genome-wide association study


Minor allele frequency


Odds ratio


Single nucleotide polymorphism



The authors are grateful to Dr. Kathleen M Egan for her input and advice over the course of the study. The authors have no conflicts of interest to disclose. This work was supported by the National Institutes of Health Intramural Research funds and grants (R01CA47147, R01CA47305, R01CA69664, U10EY006594), and by the Department of Defense Breast Cancer Research Program (W81XWH-11-1-0047).


  1. 1.
    Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093. doi: 10.1038/nature05887 PubMedCrossRefGoogle Scholar
  2. 2.
    Stacey SN, Manolescu A, Sulem P et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869. doi: 10.1038/ng2064 PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas G, Jacobs KB, Kraft P et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41:579–584. doi: 10.1038/ng.353 PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmed S, Thomas G, Ghoussaini M et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41:585–590. doi: 10.1038/ng.354 PubMedCrossRefGoogle Scholar
  5. 5.
    Zheng W, Long J, Gao Y-T et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328. doi: 10.1038/ng.318 PubMedCrossRefGoogle Scholar
  6. 6.
    Milne RL, Gaudet MM, Spurdle AB et al (2010) Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res Bcr 12:R110. doi: 10.1186/bcr2797 CrossRefGoogle Scholar
  7. 7.
    Michailidou K, Hall P, Gonzalez-Neira A et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353–361. doi: 10.1038/ng.2563 PubMedCrossRefGoogle Scholar
  8. 8.
    Harlid S, Ivarsson MIL, Butt S et al (2012) Combined effect of low-penetrant SNPs on breast cancer risk. Br J Cancer 106:389–396. doi: 10.1038/bjc.2011.461 PubMedCrossRefGoogle Scholar
  9. 9.
    Reeves GK, Travis RC, Green J et al (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA, J Am Med Assoc 304:426–434. doi: 10.1001/jama.2010.1042 CrossRefGoogle Scholar
  10. 10.
    Mealiffe ME, Stokowski RP, Rhees BK et al (2010) Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst 102:1618–1627. doi: 10.1093/jnci/djq388 PubMedCrossRefGoogle Scholar
  11. 11.
    Sueta A, Ito H, Kawase T et al (2012) A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat 132:711–721. doi: 10.1007/s10549-011-1904-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Broeks A, Schmidt MK, Sherman ME et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20:3289–3303. doi: 10.1093/hmg/ddr228 PubMedCrossRefGoogle Scholar
  13. 13.
    Travis RC, Reeves GK, Green J et al (2010) Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet 375:2143–2151. doi: 10.1016/S0140-6736(10)60636-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Butt S, Harlid S, Borgquist S et al (2012) Genetic predisposition, parity, age at first childbirth and risk for breast cancer. Bmc Res Notes 5:414. doi: 10.1186/1756-0500-5-414 PubMedCrossRefGoogle Scholar
  15. 15.
    Campa D, Kaaks R, Le Marchand L et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103:1252–1263. doi: 10.1093/jnci/djr265 PubMedCrossRefGoogle Scholar
  16. 16.
    Rebbeck TR, DeMichele A, Tran TV et al (2009) Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women. Carcinogenesis 30:269–274. doi: 10.1093/carcin/bgn247 PubMedCrossRefGoogle Scholar
  17. 17.
    Nickels S, Truong T, Hein R et al (2013) Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet 9:e1003284. doi: 10.1371/journal.pgen.1003284 PubMedCrossRefGoogle Scholar
  18. 18.
    García-Closas M, Egan KM, Abruzzo J et al (2001) Collection of genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 10:687–696Google Scholar
  19. 19.
    García-Closas M, Egan KM, Newcomb PA et al (2006) Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet 119:376–388. doi: 10.1007/s00439-006-0135-z PubMedCrossRefGoogle Scholar
  20. 20.
    Sprague BL, Trentham-Dietz A, Garcia-Closas M et al (2007) Genetic variation in TP53 and risk of breast cancer in a population-based case control study. Carcinogenesis 28:1680–1686. doi: 10.1093/carcin/bgm097 PubMedCrossRefGoogle Scholar
  21. 21.
    Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40:703–706. doi: 10.1038/ng.131 PubMedCrossRefGoogle Scholar
  22. 22.
    Figueroa JD, Garcia-Closas M, Humphreys M et al (2011) Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20:4693–4706. doi: 10.1093/hmg/ddr368 PubMedCrossRefGoogle Scholar
  23. 23.
    Long J, Shu X-O, Cai Q et al (2010) Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 19:2357–2365. doi: 10.1158/1055-9965.EPI-10-0054 CrossRefGoogle Scholar
  24. 24.
    Bean JA, Leeper JD, Wallace RB et al (1979) Variations in the reporting of menstrual histories. Am J Epidemiol 109:181–185PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shaneda Warren Andersen
    • 1
    • 2
  • Amy Trentham-Dietz
    • 1
    • 2
  • Ronald E. Gangnon
    • 2
  • John M. Hampton
    • 1
  • Jonine D. Figueroa
    • 3
  • Halcyon G. Skinner
    • 2
  • Corinne D. Engelman
    • 2
  • Barbara E. Klein
    • 4
  • Linda J. Titus
    • 5
  • Polly A. Newcomb
    • 1
    • 6
  1. 1.University of Wisconsin Carbone Cancer CenterMadisonUSA
  2. 2.Department of Population Health SciencesUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  3. 3.Division of Cancer Epidemiology & GeneticsNational Cancer InstituteBethesdaUSA
  4. 4.Department of Ophthalmology and Visual SciencesUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  5. 5.Norris Cotton Cancer CenterDartmouth Medical SchoolLebanonUSA
  6. 6.Cancer Prevention ProgramFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations