Skip to main content

Advertisement

Log in

The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Drosha is a protein that plays a key role in the biogenesis of microRNAs which are well known to be deranged in human breast cancer (BC). The purpose of the current study was to assess the biological and prognostic value of Drosha protein expression in BC. Drosha protein expression was assessed immunohistochemically in two sets of BC: (1) full-face sections of selected BC series with distinct stages of tumour progression (Normal parenchymal cells, ductal carcinoma in situ (DCIS), primary invasive BC and nodal metastases) to evaluate its differential expression, (2) tissue microarray comprising a large and well-characterised series of unselected clinically annotated invasive BC to investigate its correlation with clinicopathological features and patient outcome. A gradual loss of Drosha cytoplasmic expression was observed along tumour progression from DCIS, to invasive and to metastatic cancer cells. In invasive BC, loss of Drosha cytoplasmic expression was associated with BRCA1 and ER expression and with shorter BC specific survival (BCSS), disease free interval (DFI) and distant metastasis free interval (DMFI). This correlation was maintained in ER negative, HER2 negative, triple negative and LN negative cases. Moreover, loss of cytoplasmic Drosha was predictive of better response to chemotherapy and endocrine therapy. This study provides evidence that Drosha protein potentially plays an important role in BC progression and assessment of its expression provides an independent predictor of patient outcome. These observations provide further evidence that alterations in miRNA regulation influence tumour behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brennecke J et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36

    Article  PubMed  CAS  Google Scholar 

  2. Miska EA, Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568

    Article  PubMed  CAS  Google Scholar 

  3. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  PubMed  CAS  Google Scholar 

  4. Xu P et al (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795

    Article  PubMed  CAS  Google Scholar 

  5. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  PubMed  CAS  Google Scholar 

  6. Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  PubMed  CAS  Google Scholar 

  7. Gregory RI et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  PubMed  CAS  Google Scholar 

  8. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  PubMed  CAS  Google Scholar 

  9. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  PubMed  CAS  Google Scholar 

  10. Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  PubMed  CAS  Google Scholar 

  11. Khoshnaw SM et al (2009) MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol 62(5):422–428

    Article  PubMed  CAS  Google Scholar 

  12. Kawai S, Amano A (2012) BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197(2):201–208

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki HI et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  PubMed  CAS  Google Scholar 

  14. Davis BN et al (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61

    Article  PubMed  CAS  Google Scholar 

  15. Yamagata K et al (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 36(2):340–347

    Article  PubMed  CAS  Google Scholar 

  16. Dedes KJ et al (2011) Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 47(1):138–150

    Article  PubMed  CAS  Google Scholar 

  17. Merritt WM et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650

    Article  PubMed  CAS  Google Scholar 

  18. Shu GS, Yang ZL, Liu DC (2012) Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pract 208(7):392–397

    Google Scholar 

  19. Rakha EA et al (2005) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506

    Google Scholar 

  20. Rakha EA et al (2007) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32

    Article  PubMed  CAS  Google Scholar 

  21. Rakha EA et al (2005) Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 18(10):1295–1304

    Article  PubMed  CAS  Google Scholar 

  22. Abd El-Rehim DM et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350

    Article  PubMed  CAS  Google Scholar 

  23. Rakha EA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310

    Article  PubMed  CAS  Google Scholar 

  24. Galea MH et al (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22(3):207–219

    Article  PubMed  CAS  Google Scholar 

  25. Abd El-Rehim DM et al (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542

    Article  PubMed  CAS  Google Scholar 

  26. Rakha EA et al (2010) Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol 34(10):1472–1479

    Article  PubMed  Google Scholar 

  27. Kononen J et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  PubMed  CAS  Google Scholar 

  28. Novocastra, Novolink Polymer detection system customer guidance booklet for immunohistochemistry procedure, Leica Microsystems, www.leica-microsystems.com

  29. McCarty KS Jr et al (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721

    PubMed  Google Scholar 

  30. McShane LM et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Google Scholar 

  31. Wu H et al (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275(47):36957–36965

    Article  PubMed  CAS  Google Scholar 

  32. Shapiro JS et al (2012) Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA 18(7):1338–1346

    Google Scholar 

  33. Passon N et al (2012) Expression of Dicer and Drosha in triple-negative breast cancer. J Clin Pathol 65(4):320–326

    Google Scholar 

  34. Yan M et al (2012) Dysregulated expression of Dicer and Drosha in breast cancer. Pathol Oncol Res 18(2):343–348

    Article  PubMed  CAS  Google Scholar 

  35. Lin RJ et al (2010) microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 70(20):7841–7850

    Article  PubMed  CAS  Google Scholar 

  36. Somasundaram K (2003) Breast cancer gene 1 (BRCA1): role in cell cycle regulation and DNA repair–perhaps through transcription. J Cell Biochem 88(6):1084–1091

    Article  PubMed  CAS  Google Scholar 

  37. Paull TT et al (2001) Direct DNA binding by Brca1. Proc Natl Acad Sci USA 98(11):6086–6091

    Article  PubMed  CAS  Google Scholar 

  38. Vaksman O et al (2012) Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol 43(11):2062–2069

    Google Scholar 

  39. Rakha EA et al (2007) Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology 50(4):434–438

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarkawt M. Khoshnaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshnaw, S.M., Rakha, E.A., Abdel-Fatah, T. et al. The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients. Breast Cancer Res Treat 137, 139–153 (2013). https://doi.org/10.1007/s10549-012-2358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2358-0

Keywords

Navigation