Breast Cancer Research and Treatment

, Volume 137, Issue 1, pp 93–107 | Cite as

Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat)

  • Makoto Kubo
  • Noriko Kanaya
  • Karineh Petrossian
  • Jingjing Ye
  • Charles Warden
  • Zheng Liu
  • Reiki Nishimura
  • Tomofumi Osako
  • Masayuki Okido
  • Kazuo Shimada
  • Masato Takahashi
  • Peiguo Chu
  • Yate-Ching Yuan
  • Shiuan Chen
Preclinical study


Aromatase inhibitors (AIs) are important drugs for treating postmenopausal patients with hormone receptor-positive breast cancer. However, acquired resistance to AI therapies is a significant problem. Our study has revealed that the histone deacetylase inhibitor LBH589 treatment abrogated growth of AI-resistant cells in vitro and in vivo, causing cell cycle G2/M arrest and induced apoptosis. LBH589 treatment also reduced the level of NF-κB1 which is overexpressed when AI resistance develops. Analyzing paired tumor specimens from 12 patients, we found that NF-κB1 expression was increased in recurrent AI-resistant tumors as compared to the paired primary tumors before AI treatment. This finding was consistent with up-regulated NF-κB1 expression seen in a collection of well-established AI-resistant cell lines. Furthermore, knockdown of NF-κB1 expression significantly suppressed the proliferation of AI-resistant cells. Treatment of AI-resistant cell lines with LBH589 suppressed NF-κB1 mRNA and protein expression. In addition, LBH589 treatment abrogated growth of AI-resistant tumors in mice, and was associated with significantly decreased levels of NF-κB1 in tumors. In all, our findings strongly support further investigation of LBH589 as a novel therapeutic strategy for patients with AI-resistant breast cancer, in part by suppressing the NF-κB1 pathway.


Acquired aromatase inhibitor resistance LBH589 NF-κB1 



The research was supported by Susan G. Komen for the Cure (KG080161) and by Grant Number P30 CA033572 from the National Cancer Institute. The authors would like to thank Ms. Sophia Loera, Ms. Lucy Brown, and Dr. Keely Walker for pathologic technical assistance, flow cytometry, and editing this manuscript, and Molly Storer, Meng Wu, and Peter Nguyen for helping with the cell proliferation, animal, and NF-κB1 plasmid experiment, respectively.

Conflict of interest

There are no potential conflicts of interest.

Supplementary material

10549_2012_2332_MOESM1_ESM.doc (651 kb)
Supplementary material 1 (DOC 651 kb)


  1. 1.
    Josefsson ML, Leinster SJ (2010) Aromatase inhibitors versus tamoxifen as adjuvant hormonal therapy for oestrogen sensitive early breast cancer in post-menopausal women: meta-analyses of monotherapy, sequenced therapy and extended therapy. Breast (Edinb, Scotl) 19(2):76–83CrossRefGoogle Scholar
  2. 2.
    Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, Forbes JF (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11(12):1135–1141PubMedCrossRefGoogle Scholar
  3. 3.
    van de Velde CJ, Rea D, Seynaeve C, Putter H, Hasenburg A, Vannetzel JM, Paridaens R, Markopoulos C, Hozumi Y, Hille ET, Kieback DG, Asmar L, Smeets J, Nortier JW, Hadji P, Bartlett JM, Jones SE (2011) Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377(9762):321–331PubMedCrossRefGoogle Scholar
  4. 4.
    Regan MM, Neven P, Giobbie-Hurder A, Goldhirsch A, Ejlertsen B, Mauriac L, Forbes JF, Smith I, Lang I, Wardley A, Rabaglio M, Price KN, Gelber RD, Coates AS, Thurlimann B (2011) Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1–98 randomised clinical trial at 8.1 years median follow-up. Lancet Oncol 12(12):1101–1108PubMedCrossRefGoogle Scholar
  5. 5.
    Wong C, Chen S (2012) The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. J Steroid Biochem Mol Biol 131(3–5):83–92PubMedCrossRefGoogle Scholar
  6. 6.
    Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L, Chen S (2008) Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 68(12):4910–4918PubMedCrossRefGoogle Scholar
  7. 7.
    Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784PubMedCrossRefGoogle Scholar
  8. 8.
    Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, Pullarkat V, Bhatia R, Forman S, Yen Y, Jove R (2008) The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph-acute lymphoblastic leukemia cells. Blood 111(10):5093–5100PubMedCrossRefGoogle Scholar
  9. 9.
    Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15(12):3958–3969PubMedCrossRefGoogle Scholar
  10. 10.
    Basseres DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25(51):6817–6830PubMedCrossRefGoogle Scholar
  11. 11.
    Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS Jr (2000) Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 19(9):1123–1131PubMedCrossRefGoogle Scholar
  12. 12.
    Kramer OH, Baus D, Knauer SK, Stein S, Jager E, Stauber RH, Grez M, Pfitzner E, Heinzel T (2006) Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20(4):473–485PubMedCrossRefGoogle Scholar
  13. 13.
    Hu J, Colburn NH (2005) Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding. Mol Cancer Res 3(2):100–109PubMedCrossRefGoogle Scholar
  14. 14.
    LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics 2:67PubMedCrossRefGoogle Scholar
  15. 15.
    Sun XZ, Zhou D, Chen S (1997) Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. J Steroid Biochem Mol Biol 63(1–3):29–36PubMedCrossRefGoogle Scholar
  16. 16.
    Chen S, Masri S, Wang X, Phung S, Yuan YC, Wu X (2006) What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 102(1–5):232–240PubMedCrossRefGoogle Scholar
  17. 17.
    Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104(12):1828–1835PubMedCrossRefGoogle Scholar
  18. 18.
    Yardley D (2011) Entinostat, a novel histone deacetylase inhibitor, added to exemestane improves PFS in advanced breast cancer in a randomized, phase II, double-blind study. Cancer Res 71(24 Suppl.):118sGoogle Scholar
  19. 19.
    Drappatz J, Lee EQ, Hammond S, Grimm SA, Norden AD, Beroukhim R, Gerard M, Schiff D, Chi AS, Batchelor TT, Doherty LM, Ciampa AS, Lafrankie DC, Ruland S, Snodgrass SM, Raizer JJ, Wen PY (2012) Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J Neurooncol 107(1):133–138PubMedCrossRefGoogle Scholar
  20. 20.
    Jones SF, Bendell JC, Infante JR, Spigel DR, Thompson DS, Yardley DA, Greco FA, Murphy PB, Burris HA 3rd (2011) A phase I study of panobinostat in combination with gemcitabine in the treatment of solid tumors. Clin Adv Hematol Oncol 9(3):225–230PubMedGoogle Scholar
  21. 21.
    Dickinson M, Ritchie D, DeAngelo DJ, Spencer A, Ottmann OG, Fischer T, Bhalla KN, Liu A, Parker K, Scott JW, Bishton M, Prince HM (2009) Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin lymphoma. Br J Haematol 147(1):97–101PubMedCrossRefGoogle Scholar
  22. 22.
    Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535):1653–1657CrossRefGoogle Scholar
  23. 23.
    Mayo MW, Denlinger CE, Broad RM, Yeung F, Reilly ET, Shi Y, Jones DR (2003) Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J Biol Chem 278(21):18980–18989PubMedCrossRefGoogle Scholar
  24. 24.
    Dai Y, Rahmani M, Dent P, Grant S (2005) Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 25(13):5429–5444PubMedCrossRefGoogle Scholar
  25. 25.
    Lerebours F, Vacher S, Andrieu C, Espie M, Marty M, Lidereau R, Bieche I (2008) NF-kappa B genes have a major role in inflammatory breast cancer. BMC Cancer 8:41PubMedCrossRefGoogle Scholar
  26. 26.
    Imre G, Gekeler V, Leja A, Beckers T, Boehm M (2006) Histone deacetylase inhibitors suppress the inducibility of nuclear factor-kappaB by tumor necrosis factor-alpha receptor-1 down-regulation. Cancer Res 66(10):5409–5418PubMedCrossRefGoogle Scholar
  27. 27.
    Furumai R, Ito A, Ogawa K, Maeda S, Saito A, Nishino N, Horinouchi S, Yoshida M (2011) Histone deacetylase inhibitors block nuclear factor-kappaB-dependent transcription by interfering with RNA polymerase II recruitment. Cancer Sci 102(5):1081–1087PubMedCrossRefGoogle Scholar
  28. 28.
    Song W, Tai YT, Tian Z, Hideshima T, Chauhan D, Nanjappa P, Exley MA, Anderson KC, Munshi NC (2011) HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 25(1):161–168PubMedCrossRefGoogle Scholar
  29. 29.
    Prystowsky MB, Adomako A, Smith RV, Kawachi N, McKimpson W, Atadja P, Chen Q, Schlecht NF, Parish JL, Childs G, Belbin TJ (2009) The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J Pathol 218(4):467–477PubMedCrossRefGoogle Scholar
  30. 30.
    Miller WR, Larionov A (2011) Molecular effects of oestrogen deprivation in breast cancer. Mol Cell Endocrinol 340(2):127–136PubMedCrossRefGoogle Scholar
  31. 31.
    Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC, Clarke R (2010) BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J 24(6):2040–2055PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37(5):1130–1144PubMedCrossRefGoogle Scholar
  33. 33.
    Zhou Y, Eppenberger-Castori S, Eppenberger U, Benz CC (2005) The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 12(Suppl 1):S37–S46PubMedCrossRefGoogle Scholar
  34. 34.
    Pereira SG, Oakley F (2008) Nuclear factor-kappaB1: regulation and function. Int J Biochem Cell Biol 40(8):1425–1430PubMedCrossRefGoogle Scholar
  35. 35.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019PubMedCrossRefGoogle Scholar
  36. 36.
    Chen S, Ye J, Kijima I, Evans D (2010) The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proc Natl Acad Sci USA 107(24):11032–11037PubMedCrossRefGoogle Scholar
  37. 37.
    Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18(5):601–607PubMedCrossRefGoogle Scholar
  38. 38.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas S, Munster PN (2009) Histone deacetylase inhibitor induced modulation of anti-estrogen therapy. Cancer Lett 280(2):184–191PubMedCrossRefGoogle Scholar
  40. 40.
    Vig E, Green M, Liu Y, Donner DB, Mukaida N, Goebl MG, Harrington MA (1999) Modulation of tumor necrosis factor and interleukin-1-dependent NF-kappaB activity by mPLK/IRAK. J Biol Chem 274(19):13077–13084PubMedCrossRefGoogle Scholar
  41. 41.
    Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK, Du B, Brogi E, Crawford CB, Kopelovich L, Subbaramaiah K, Dannenberg AJ (2011) Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila) 4(7):1021–1029CrossRefGoogle Scholar
  42. 42.
    Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4(3):329–346CrossRefGoogle Scholar
  43. 43.
    Baumgarten SC, Frasor J (2012) Minireview: inflammation: an instigator of more aggressive estrogen receptor (er) positive breast cancers. Mol Endocrinol 26(3):360–371PubMedCrossRefGoogle Scholar
  44. 44.
    Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14(3):R79PubMedCrossRefGoogle Scholar
  45. 45.
    Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AM (2011) Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res 71(5):1893–1903PubMedCrossRefGoogle Scholar
  46. 46.
    Zhou Q, Atadja P, Davidson NE (2007) Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther 6(1):64–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Makoto Kubo
    • 1
  • Noriko Kanaya
    • 1
  • Karineh Petrossian
    • 1
  • Jingjing Ye
    • 1
  • Charles Warden
    • 2
  • Zheng Liu
    • 2
  • Reiki Nishimura
    • 3
  • Tomofumi Osako
    • 3
  • Masayuki Okido
    • 4
  • Kazuo Shimada
    • 5
  • Masato Takahashi
    • 6
  • Peiguo Chu
    • 7
  • Yate-Ching Yuan
    • 2
  • Shiuan Chen
    • 1
  1. 1.Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteUSA
  2. 2.Department of Molecular MedicineBeckman Research Institute of the City of HopeDuarteUSA
  3. 3.Department of Breast & Endocrine SurgeryKumamoto City HospitalKumamotoJapan
  4. 4.Department of Breast SurgeryHamanomachi HospitalFukuokaJapan
  5. 5.Shimada Breast & Surgery ClinicKitakyushuJapan
  6. 6.Department of Breast SurgeryHokkaido Cancer Center, National Hospital OrganizationSapporoJapan
  7. 7.Department of PathologyBeckman Research Institute of the City of HopeDuarteUnited States of America

Personalised recommendations