Advertisement

Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 739–748 | Cite as

Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells

  • Chi Zhang
  • Xuening Duan
  • Ling Xu
  • Jingming Ye
  • Jianxin Zhao
  • Yinhua Liu
Preclinical Study

Abstract

Resistance to trastuzumab is a major issue in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several potential resistance mechanisms have been investigated, but the results are controversial and no conclusion has been reached. Erythropoietin receptor (EPOR) may function in cell growth, and expressed in various cancer cells. Because the downstream signaling pathways for EPOR and HER2 partially overlapped, we hypothesized that EPOR may play a role in the inhibition effect of trastuzumab and resistance to trastuzumab. Here, we detected the expression of EPOR mRNA and protein in HER2-positive breast cancer cell lines and tissues. EPOR expressed in SKBR3, MDA-MB-453, and UACC-812 cell lines, but not in BT474. Of the 55 HER2-positive cancer tissues, EPOR was positive in 42 samples and highly expressed (H-score ≥ 25) in 24 by immunohistochemistry. The difference between EPOR expression and Ki67 index was significant (P = 0.033), and EPOR expression also positively correlated with higher pathological stage (Spearman correlation coefficient = 0.359; P = 0.007). Exogenous EPO antagonized trastuzumab-induced inhibition of cell proliferation in HER2/EPOR dual-positive breast cancer cells. We then exposed SKBR3 cells to trastuzumab for 4 months to obtain trastuzumab-resistant SKBR3 cell line, which demonstrated higher phosphorylated EPOR level, higher EPO expression and more extracellular secretion than non-resistant parental SKBR3 cells. Downregulation EPOR expression using short hairpin RNA resensitized trastuzumab-resistant cells to this drug, and SKBR3 cells with EPOR downregulation demonstrated attenuated trastuzumab resistance after the same resistance induction. EPOR downregulation plus trastuzumab produced a synergetic action in the inhibition of cell proliferation and invasion in SKBR3 and MDA-MB-453 cell lines. Therefore, EPOR expression may be involved in tumor progression and proliferation in HER2-positive breast cancer. EPO/EPOR contributes to the mechanism of trastuzumab resistance in SKBR3 cell lines, and EPOR downregulation can reverse the resistance to trastuzumab and increase the inhibition effect of this drug.

Keywords

Breast cancer Erythropoietin receptor HER2 Resistance Trastuzumab 

Notes

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. doi: 10.1056/NEJMoa052122 PubMedCrossRefGoogle Scholar
  2. 2.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672. doi: 10.1056/NEJMoa052306 PubMedCrossRefGoogle Scholar
  3. 3.
    Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL, Ungaro P, Norton L, Winer E, Hudis C (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26:1642–1649. doi: 10.1200/JCO.2007.11.6699 PubMedCrossRefGoogle Scholar
  4. 4.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726PubMedCrossRefGoogle Scholar
  5. 5.
    Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357:39–51. doi: 10.1056/NEJMra043186 PubMedCrossRefGoogle Scholar
  6. 6.
    Garrett JT, Arteaga CL (2011) Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther 11:793–800PubMedCrossRefGoogle Scholar
  7. 7.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127. doi: 10.1016/j.ccr.2004.06.022 PubMedCrossRefGoogle Scholar
  8. 8.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402. doi: 10.1016/j.ccr.2007.08.030 PubMedCrossRefGoogle Scholar
  9. 9.
    Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65:11118–11128. doi: 10.1158/0008-5472.CAN-04-3841 PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH, Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D (2011) Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17:461–469. doi: 10.1038/nm.2309 PubMedCrossRefGoogle Scholar
  11. 11.
    Khoury T, Kanehira K, Wang D, Ademuyiwa F, Mojica W, Cheney R, Morrison C, Conroy J, Nowak N, Liu S (2010) Breast carcinoma with amplified HER2: a gene expression signature specific for trastuzumab resistance and poor prognosis. Mod Pathol 23:1364–1378. doi: 10.1038/modpathol.2010.125 PubMedCrossRefGoogle Scholar
  12. 12.
    Jelkmann W (2007) Erythropoietin after a century of research: younger than ever. Eur J Haematol 78:183–205. doi: 10.1111/j.1600-0609.2007.00818.x PubMedCrossRefGoogle Scholar
  13. 13.
    Henry DH, Abels RI (1994) Recombinant human erythropoietin in the treatment of cancer and chemotherapy-induced anemia: results of double-blind and open-label follow-up studies. Semin Oncol 21:21–28PubMedGoogle Scholar
  14. 14.
    Lappin TR, Maxwell AP, Johnston PG (2002) EPO’s alter ego: erythropoietin has multiple actions. Stem Cells 20:485–492. doi: 10.1634/stemcells.20-6-485 PubMedCrossRefGoogle Scholar
  15. 15.
    Hardee ME, Arcasoy MO, Blackwell KL, Kirkpatrick JP, Dewhirst MW (2006) Erythropoietin biology in cancer. Clin Cancer Res 12:332–339. doi: 10.1158/1078-0432.CCR-05-1771 PubMedCrossRefGoogle Scholar
  16. 16.
    Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, Frommhold H (2003) Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362:1255–1260. doi: 10.1016/S0140-6736(03)14567-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Bohlius J, Schmidlin K, Brillant C, Schwarzer G, Trelle S, Seidenfeld J, Zwahlen M, Clarke M, Weingart O, Kluge S, Piper M, Rades D, Steensma DP, Djulbegovic B, Fey MF, Ray-Coquard I, Machtay M, Moebus V, Thomas G, Untch M, Schumacher M, Egger M, Engert A (2009) Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 373:1532–1542. doi: 10.1016/S0140-6736(09)60502-X PubMedCrossRefGoogle Scholar
  18. 18.
    Liang K, Esteva FJ, Albarracin C, Stemke-Hale K, Lu Y, Bianchini G, Yang CY, Li Y, Li X, Chen CT, Mills GB, Hortobagyi GN, Mendelsohn J, Hung MC, Fan Z (2010) Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation. Cancer Cell 18:423–435. doi: 10.1016/j.ccr.2010.10.025 PubMedCrossRefGoogle Scholar
  19. 19.
    Paragh G, Kumar SM, Rakosy Z, Choi SC, Xu X, Acs G (2009) RNA interference-mediated inhibition of erythropoietin receptor expression suppresses tumor growth and invasiveness in A2780 human ovarian carcinoma cells. Am J Pathol 174:1504–1514. doi: 10.2353/ajpath.2009.080592 PubMedCrossRefGoogle Scholar
  20. 20.
    Pelekanou V, Kampa M, Kafousi M, Dambaki K, Darivianaki K, Vrekoussis T, Sanidas E, Tsiftsis DD, Stathopoulos EN, Castanas E (2007) Erythropoietin and its receptor in breast cancer: correlation with steroid receptors and outcome. Cancer Epidemiol Biomarkers Prev 16:2016–2023. doi: 10.1158/1055-9965.EPI-06-1023 PubMedCrossRefGoogle Scholar
  21. 21.
    Doleschel D, Mundigl O, Wessner A, Gremse F, Bachmann J, Rodriguez A, Klingmuller U, Jarsch M, Kiessling F, Lederle W (2012) Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts. J Nucl Med 53:304–311. doi: 10.2967/jnumed.111.091124 PubMedCrossRefGoogle Scholar
  22. 22.
    Hedley BD, Chu JE, Ormond DG, Beausoleil MS, Boasie A, Allan AL, Xenocostas A (2011) Recombinant human erythropoietin in combination with chemotherapy increases breast cancer metastasis in preclinical mouse models. Clin Cancer Res 17:6151–6162. doi: 10.1158/1078-0432.CCR-10-3298 PubMedCrossRefGoogle Scholar
  23. 23.
    Bohlius J, Weingart O, Trelle S, Engert A (2006) Cancer-related anemia and recombinant human erythropoietin—an updated overview. Nat Clin Pract Oncol 3:152–164. doi: 10.1038/ncponc0451 PubMedCrossRefGoogle Scholar
  24. 24.
    Rodgers GM 3rd, Becker PS, Blinder M, Cella D, Chanan-Khan A, Cleeland C, Coccia PF, Djulbegovic B, Gilreath JA, Kraut EH, Matulonis UA, Millenson MM, Reinke D, Rosenthal J, Schwartz RN, Soff G, Stein RS, Vlahovic G, Weir AB 3rd (2012) Cancer- and chemotherapy-induced anemia. J Natl Compr Cancer Netw 10:628–653Google Scholar
  25. 25.
    Mohyeldin A, Dalgard CL, Lu H, McFate T, Tait AS, Patel VC, Wong K, Rushing E, Roy S, Acs G, Verma A (2007) Survival and invasiveness of astrocytomas promoted by erythropoietin. J Neurosurg 106:338–350. doi: 10.3171/jns.2007.106.2.338 PubMedCrossRefGoogle Scholar
  26. 26.
    Shi Z, Hodges VM, Dunlop EA, Percy MJ, Maxwell AP, El-Tanani M, Lappin TR (2010) Erythropoietin-induced activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK pathways promotes malignant cell behavior in a modified breast cancer cell line. Mol Cancer Res 8:615–626. doi: 10.1158/1541-7786.MCR-09-0264 PubMedCrossRefGoogle Scholar
  27. 27.
    Wu P, Zhang N, Wang X, Zhang C, Li T, Ning X, Gong K (2012) The erythropoietin/erythropoietin receptor signaling pathway promotes growth and invasion abilities in human renal carcinoma cells. PLoS ONE 7:e45122. doi: 10.1371/journal.pone.0045122 PubMedCrossRefGoogle Scholar
  28. 28.
    Mannello F, Fabbri L, Ciandrini E, Tonti GA (2008) Increased levels of erythropoietin in nipple aspirate fluid and in ductal cells from breast cancer patients. Cell Oncol 30:51–61PubMedGoogle Scholar
  29. 29.
    Laugsch M, Metzen E, Svensson T, Depping R, Jelkmann W (2008) Lack of functional erythropoietin receptors of cancer cell lines. Int J Cancer 122:1005–1011. doi: 10.1002/ijc.23201 PubMedCrossRefGoogle Scholar
  30. 30.
    Larsson AM, Jirstrom K, Fredlund E, Nilsson S, Ryden L, Landberg G, Pahlman S (2009) Erythropoietin receptor expression and correlation to tamoxifen response and prognosis in breast cancer. Clin Cancer Res 15:5552–5559. doi: 10.1158/1078-0432.CCR-08-3014 PubMedCrossRefGoogle Scholar
  31. 31.
    Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, Wong K, Verma A (2001) Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 61:3561–3565PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Chi Zhang
    • 1
  • Xuening Duan
    • 1
  • Ling Xu
    • 1
  • Jingming Ye
    • 1
  • Jianxin Zhao
    • 1
  • Yinhua Liu
    • 1
  1. 1.Peking University First Hospital Breast Disease CentreBeijingChina

Personalised recommendations