Advertisement

Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 931–933 | Cite as

Novel BRCA1 and BRCA2 genomic rearrangements in Southern Chinese breast/ovarian cancer patients

  • Ava Kwong
  • Enders K. O. Ng
  • Fian B. F. Law
  • H. N. Wong
  • Anna Wa
  • Chris L. P. Wong
  • Allison W. Kurian
  • Dee W. West
  • James M. Ford
  • Edmond S. K. Ma
Open Access
Letter to the Editor

Keywords

Ovarian Cancer Male Breast Cancer Bilateral Breast Cancer Male Proband Female Proband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

To the Editor,

Breast cancer is the most frequently occurring malignancy in not only Western but also Asian women. Germline mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, are found in a significant proportion of patients affected by hereditary breast/ovarian cancer [1]. Pathogenic mutations in BRCA1 and BRCA2 are predominantly small deletions, insertions, and point mutations resulting in frame shift, nonsense, premature termination, or splice site alterations, which lead to the formation of a truncated BRCA protein. Owing to the richness of Alu sequences [2] in BRCA1 and BRCA2, albeit to a lesser extent in the latter gene, it is not surprising that BRCA1/2 genomic rearrangements are known to be mediated through Alu repeat sequences. Large genomic rearrangements (LGRs) have been increasingly reported and more than 80 different LGRs have been characterized in BRCA1, but less in BRCA2 [3, 4, 5]. One study in the United States reported that genetic testing, as currently carried out, did not provide all available information to women at risk. Their findings indicated that 12 % of those high-risk breast cancer patients with negative genetic test results for BRCA1 and BRCA2 actually carried large genomic arrangement in one of these genes [3]. These results are consistent with previous studies specifically of BRCA1 in various European populations [6, 7]. Over the past decade, a large number of techniques have become available for detecting large deletions and duplications. Multiplex ligation-dependent probe amplification (MLPA) is one of the most commonly used assays for this purpose [4, 8, 9, 10, 11]. The prevalence of LGRs varies between different populations ranging from 0 to 27 % of BRCA1 mutation-positive families from French Canadian and Dutch populations, respectively [10, 12]. Founder LGRs have also been identified. However, in many countries; breast cancer patients without family history are generally not tested for LGRs. Lack of a family history may relate to small family size, non-penetrance, premature death, loss of contact with family members, and inadequate information [13]. Alternatively, lack of family history can also be explained by new germline mutations that found in the probands, but not in any of their family members. De novo mutations are very rare, but reported among BRCA genes [14, 15, 16, 17]. Previously, we reported a de novo mutation in which multiple exons were deleted from BRCA1 in a Chinese breast cancer patient [18]. To date, the spectrum of LGR in Chinese population is largely unknown. In this study, MLPA analysis was employed together with full gene sequencing to determine the frequency and spectrum of BRCA1/2 LGRs in a group of Chinese breast cancer patients from Southern China.

A total of 555 clinically high-risk breast and/or ovarian cancer probands (520 female and 35 male), referred to the Hong Kong Hereditary and High Risk Breast Cancer Programme (www.HRBCP.org) from March 2007 to November 2011, were recruited [18, 19]. Based on the lower incidence of breast cancer in Asia cohorts, clinically high-risk patients included in this study were defined as those who (1) had at least one first- or second-degree relative with breast and/or ovarian cancer, regardless of age; (2) were less than 50 years of age at diagnosis; (3) had bilateral breast cancer; (4) had triple negative (TN) or medullary type pathology; (5) had at least one relative with cancers other than breast and ovarian cancer that are known to be related to BRCA mutations; or (6) they were ovarian cancer patients with a family history of breast cancer. The mean age at diagnosis of breast cancer was 45-years (range 18–82) and that of ovarian cancer was 44-years (range 19–64). All probands were from Chinese ancestry and over 90 % were from Guangdong province of Southern China.

MLPA analysis and full BRCA1/2 sequencing of the 555 probands were conducted. Overall, we identified 69 (69/555, 12.4 %) deleterious BRCA gene mutations. Of the 69 deleterious mutations, 29 were in BRCA1 and 40 in BRCA2. Among the 69 mutations, 29 of them were novel in which 12 were in BRCA1 and 17 were in BRCA2. Intriguingly, we also identified 7 out of the 35 male probands who carried only BRCA2 deleterious mutations. Most importantly, among the 29 novel mutations, 4 of them are LGRs (2 in BRCA1 and 2 in BRCA2) and all were only detected by MLPA, but not sequencing. Overall it accounted for 5.8 % (4/69) of all BRCA mutations in our cohort, 6.9 % (2/29) of all BRCA1 mutations and 5 % (2/40) of all BRCA2 mutations. Except for the one we previously reported [18], all remaining LGRs identified in this study are novel mutations and not found in BIC entries.

The characteristics of the probands and characterization of the LGRs are described in Table 1. Based on MLPA analysis, female proband (TWH9701) was found to have a large BRCA1 deletion of exons 1–12. We have previously reported this patient who carried a de novo BRCA1 LGR because none of her parents carried the mutation [18]. Although we could not determine the LGR breakpoints by cDNA sequencing, qRT-PCR analysis has shown that this novel germline mutation resulted in the downregulation of BRCA1 gene expression, suggesting that there is no expression of truncated RNA transcript. Female proband (TWH5901) was found to have a BRCA1 deletion spanning exons 17–20. Sequence analysis of amplified cDNA revealed a deletion of 291 bp with breakpoints located at c.4987_5277. The loss of exons 17–20 caused an in-frame deletion and truncation of the BRCA1 protein (p.M1663_K1759del97). Male proband (HKSH9601) and a family member were identified to carry a BRCA2 deletion of exons 15–16 only by MLPA. Sequencing of amplified cDNA revealed a deletion of 370 bp with breakpoints located at c.7436_7805. This deletion produced a shift in the reading frame and truncation of BRCA2 protein (p.Asp2479GlyfsX46). Female proband (HKSH1001) was found to carry a BRCA2 deletion of exons 21 and sequence analysis revealed that a deletion of 122 bp with breakpoints located at c.8633_8754. The loss of exon 21 caused a shift in the reading frame and truncation of BRCA2 protein (p.Glu2878GlyfsX5). Importantly, we have recently confirmed by haplotype analysis that the recurrent LGR (c.7436_7805del370) found in the male proband (HKSH9601) and his family member is a founder mutation [20]. Thus, we are the first to report that male breast cancer in this Chinese family has the BRCA2 founder LGR.
Table 1

BRCA genomic rearrangements of the probands

Exon deletion

Breakpointsa (cDNA)

Predicted amino acid change

Case no.

Gender

Family history of BC

BC and other cancers (age at diagnosis)

Other tumors in proband family

BIC entries

1–12 (BRCA1)

No transcript

Uncertain

TWH9701

F

No

BC (30)

Bone, leukemia, liver, pancreas

None

17–20 (BRCA1)

c.4987_5277del291

p.M1663_K1759del97

TWH5901

F

Yes

BC (36); OC (45)

Esophagus, stomach

None

15–16 (BRCA2)

c.7436_7805del370

p.Asp2479GlyfsX46

HKSH9601

M

Yes

BC (55); GC (54); HCC (50)

Esophagus

None

21 (BRCA2)

c.8633_8754del122

p.Glu2878GlyfsX5

HKSH1001

F

Yes

BC (39)

None

BC breast cancer, GC gastric cancer, HCC hepatocellular carcinoma, OC ovarian cancer, BIC breast cancer information core

aAll mutations are named according to the recommendations for the description of sequence variants of Human Genome Variation Society (HGVS)

In conclusion, overall BRCA1/2 mutation prevalence among this cohort was 12.4 % (69/555). Four novel LGRs (2 in BRCA1 and 2 in BRCA2) were detected only by MLPA, which accounted for 6.9 % (2/29) of all BRCA1 mutations and 5 % (2/40) of all BRCA2 mutations. These findings highlight the LGR spectrum of BRCA1 and BRCA2 genes in Southern Chinese breast cancer patients and the ethnic specificity of these rearrangements. Consistent with the literature, we recommend LGR testing together with BRCA1/2 full gene sequencing for the purpose of comprehensive BRCA1/2 analysis in the clinical setting.

Notes

Acknowledgments

We sincerely thank sDr Ellen Li Charitable Foundation, The Kuok Foundation, National Institute of Health 1R03CA130065, and North California Cancer Center for support.

Conflict of interest

None.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The breast cancer linkage consortium. Am J Hum Genet 62:676–689PubMedCrossRefGoogle Scholar
  2. 2.
    Smith TM, Lee MK, Szabo CI, Jerome N, McEuen M et al (1996) Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res 6:1029–1049PubMedCrossRefGoogle Scholar
  3. 3.
    Walsh T, Casadei S, Coats KH, Swisher E, Stray SM et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388PubMedCrossRefGoogle Scholar
  4. 4.
    Bunyan DJ, Eccles DM, Sillibourne J, Wilkins E, Thomas NS et al (2004) Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br J Cancer 91:1155–1159PubMedCrossRefGoogle Scholar
  5. 5.
    Machado PM, Brandao RD, Cavaco BM, Eugenio J, Bento S et al (2007) Screening for a BRCA2 rearrangement in high-risk breast/ovarian cancer families: evidence for a founder effect and analysis of the associated phenotypes. J Clin Oncol 25:2027–2034PubMedCrossRefGoogle Scholar
  6. 6.
    Hendrickson BC, Judkins T, Ward BD, Eliason K, Deffenbaugh AE et al (2005) Prevalence of five previously reported and recurrent BRCA1 genetic rearrangement mutations in 20,000 patients from hereditary breast/ovarian cancer families. Genes Chromosomes Cancer 43:309–313PubMedCrossRefGoogle Scholar
  7. 7.
    Mazoyer S (2005) Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum Mutat 25:415–422PubMedCrossRefGoogle Scholar
  8. 8.
    Kwong A, Wong LP, Wong HN, Law FB, Ng EK et al (2009) A BRCA2 founder mutation and seven novel deleterious BRCA mutations in southern Chinese women with breast and ovarian cancer. Breast Cancer Res Treat 117:683–686PubMedCrossRefGoogle Scholar
  9. 9.
    Sellner LN, Taylor GR (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat 23:413–419PubMedCrossRefGoogle Scholar
  10. 10.
    Hogervorst FB, Nederlof PM, Gille JJ, McElgunn CJ, Grippeling M et al (2003) Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res 63:1449–1453PubMedGoogle Scholar
  11. 11.
    Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57PubMedCrossRefGoogle Scholar
  12. 12.
    Moisan AM, Fortin J, Dumont M, Samson C, Bessette P et al (2006) No Evidence of BRCA1/2 genomic rearrangements in high-risk French-Canadian breast/ovarian cancer families. Genet Test 10:104–115PubMedCrossRefGoogle Scholar
  13. 13.
    Edwards E, Yearwood C, Sillibourne J, Baralle D, Eccles D (2009) Identification of a de novo BRCA1 mutation in a woman with early onset bilateral breast cancer. Fam Cancer 8:479–482PubMedCrossRefGoogle Scholar
  14. 14.
    Robson M, Scheuer L, Nafa K, Ellis N, Offit K (2002) Unique de novo mutation of BRCA2 in a woman with early onset breast cancer. J Med Genet 39:126–128PubMedCrossRefGoogle Scholar
  15. 15.
    Tesoriero A, Andersen C, Southey M, Somers G, McKay M et al (1999) De novo BRCA1 mutation in a patient with breast cancer and an inherited BRCA2 mutation. Am J Hum Genet 65:567–569PubMedCrossRefGoogle Scholar
  16. 16.
    van der Luijt RB, van Zon PH, Jansen RP, van der Sijs-Bos CJ, Warlam-Rodenhuis CC et al (2001) De novo recurrent germline mutation of the BRCA2 gene in a patient with early onset breast cancer. J Med Genet 38:102–105PubMedCrossRefGoogle Scholar
  17. 17.
    Hansen TV, Bisgaard ML, Jonson L, Albrechtsen A, Filtenborg-Barnkob B et al (2008) Novel de novo BRCA2 mutation in a patient with a family history of breast cancer. BMC Med Genet 9:58PubMedCrossRefGoogle Scholar
  18. 18.
    Kwong A, Ng EK, Tang EY, Wong CL, Law FB et al (2011) A novel de novo BRCA1 mutation in a Chinese woman with early onset breast cancer. Fam Cancer 10:233–237PubMedCrossRefGoogle Scholar
  19. 19.
    Kwong A, Ng EK, Law FB, Wong LP, To MY, et al. (2010) High-resolution melting analysis for rapid screening of BRCA2 founder mutations in Southern Chinese breast cancer patients. Breast Cancer Res TreatGoogle Scholar
  20. 20.
    Kwong A, Ng EK, Wong CL, Law FB, Au T et al (2012) Identification of BRCA1/2 founder mutations in Southern Chinese breast cancer patients using Gene sequencing and high resolution DNA melting analysis. Plos One 7:e43994PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Ava Kwong
    • 1
    • 3
    • 4
    • 5
  • Enders K. O. Ng
    • 1
    • 2
  • Fian B. F. Law
    • 2
  • H. N. Wong
    • 1
  • Anna Wa
    • 1
  • Chris L. P. Wong
    • 2
    • 4
  • Allison W. Kurian
    • 5
  • Dee W. West
    • 5
  • James M. Ford
    • 5
  • Edmond S. K. Ma
    • 2
    • 4
  1. 1.Department of SurgeryThe University of Hong KongHong Kong SARChina
  2. 2.Department of Molecular PathologyHong Kong Sanatorium & HospitalHong Kong SARChina
  3. 3.Cancer Genetics CenterHong Kong Sanatorium & HospitalHong Kong SARChina
  4. 4.Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SARChina
  5. 5.Departments of Medicine, Oncology, and Health Research and PolicyStanford University School of MedicinePalo AltoUSA

Personalised recommendations