Breast Cancer Research and Treatment

, Volume 136, Issue 2, pp 379–388 | Cite as

mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo

  • Yue Zhang
  • Song Xu
  • Jun Lin
  • Guangyu Yao
  • Zelong Han
  • Bo Liang
  • Zhenhong Zou
  • Zhenguo Chen
  • Qiancheng Song
  • Yifan Dai
  • Tianming Gao
  • Anling Liu
  • Xiaochun Bai
Preclinical Study


Nordihydroguaiaretic acid (NDGA) is a natural phenolic compound isolated from the creosote bush Larrea divaricata, which has anti-tumor activities both in vitro and in vivo. Its analogs are in clinical development for use in refractory solid tumors. But the mechanisms underlying the anti-cancer effect of NDGA are not fully understood. In this study, we identified mammalian target of rapamycin complex 1 (mTORC1) as a target of NDGA both in cultured breast cancer cells and in xenograft models. NDGA effectively inhibited basal level of mTORC1 but not mTORC2 activity in breast cancer cell lines. NDGA also suppressed mTORC1 downstream signaling such as expression of cyclin D1, hypoxia-inducible factor-α and VEGF, and prevented proliferation in breast cancer cells. Although NDGA stimulated AMP-activated protein kinase (AMPK)/tuberous sclerosis complex 2 (TSC2) signaling, which negatively regulates mTORC1, AMPK and TSC2 deletion could not diminish the inhibition of mTORC1 by NDGA. Subsequent studies revealed that NDGA may also direct target mTORC1 complex because NDGA suppressed amino acids- and insulin-stimulated mTORC1 and acted like rapamycin to disrupt mTOR–Raptor interaction. Most importantly, NDGA repressed breast tumor growth and targeted mTORC1 and its downstream signaling in xenograft models. Together our data provide a novel mechanism for NDGA activity which could help explain its anti-cancer activity. Disruption of mTOR–Raptor complex and activation of AMPK/TSC signaling may contribute to inhibitory effects of NDGA against mTORC1. Our data also raise the possibility that NDGA, as an mTORC1 inhibitor, may have a broad spectrum of action on breast cancers.


Nordihydroguaiaretic acid Mammalian target of rapamycin complex 1 Breast cancer Raptor AMP-activated protein kinase Tuberous sclerosis complex 2 



The authors greatly appreciate the gift of TSC2+/+ and TSC2−/− MEFs from Dr. David J. Kwiatkowski (Brigham and Women’s Hospital). This work was supported by the State Key Development Program for Basic Research of China (2009CB 918904, 2013CB 945203), Program for Changjiang Scholars and Innovative Research Team in University (IRT1142), and National Natural Sciences Foundation of China (30900555 and 91029727).

Conflict of interest

The authors declared no conflict of interest.


  1. 1.
    Lu JM, Nurko J, Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Chen C (2010) Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Med Sci Monit 16(5):RA93–RA100PubMedGoogle Scholar
  2. 2.
    Fujiwara T, Takami N, Misumi Y, Ikehara Y (1998) Nordihydroguaiaretic acid blocks protein transport in the secretory pathway causing redistribution of Golgi proteins into the endoplasmic reticulum. J Biol Chem 273(5):3068–3075PubMedCrossRefGoogle Scholar
  3. 3.
    Sahu SC, Ruggles DI, O’Donnell MW (2006) Prooxidant activity and toxicity of nordihydroguaiaretic acid in clone-9 rat hepatocyte cultures. Food Chem Toxicol 44(10):1751–1757PubMedCrossRefGoogle Scholar
  4. 4.
    Avis IM, Jett M, Boyle T, Vos MD, Moody T, Treston AM, Martinez A, Mulshine JL (1996) Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest 97(3):806–813PubMedCrossRefGoogle Scholar
  5. 5.
    Huang JK, Chen WC, Huang CJ, Hsu SS, Chen JS, Cheng HH, Chang HT, Jiann BP, Jan CR (2004) Nordihydroguaiaretic acid-induced Ca2+ handling and cytotoxicity in human prostate cancer cells. Life Sci 75(19):2341–2351PubMedCrossRefGoogle Scholar
  6. 6.
    Shimakura S, Boland CR (1992) Eicosanoid production by the human gastric cancer cell line AGS and its relation to cell growth. Cancer Res 52(7):1744–1749PubMedGoogle Scholar
  7. 7.
    Meyer GE, Chesler L, Liu D, Gable K, Maddux BA, Goldenberg DD, Youngren JF, Goldfine ID, Weiss WA, Matthay KK, Rosenthal SM (2007) Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells. J Cell Biochem 102(6):1529–1541PubMedCrossRefGoogle Scholar
  8. 8.
    Rose DP, Connolly JM (1990) Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res 50(22):7139–7144PubMedGoogle Scholar
  9. 9.
    Meyer AN, McAndrew CW, Donoghue DJ (2008) Nordihydroguaiaretic acid inhibits an activated fibroblast growth factor receptor 3 mutant and blocks downstream signaling in multiple myeloma cells. Cancer Res 68(18):7362–7370PubMedCrossRefGoogle Scholar
  10. 10.
    Seufferlein T, Seckl MJ, Schwarz E, Beil M, v Wichert G, Baust H, Luhrs H, Schmid RM, Adler G (2002) Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br J Cancer 86(7):1188–1196PubMedCrossRefGoogle Scholar
  11. 11.
    Youngren JF, Gable K, Penaranda C, Maddux BA, Zavodovskaya M, Lobo M, Campbell M, Kerner J, Goldfine ID (2005) Nordihydroguaiaretic acid (NDGA) inhibits the IGF-1 and c-erbB2/HER2/neu receptors and suppresses growth in breast cancer cells. Breast Cancer Res Treat 94(1):37–46PubMedCrossRefGoogle Scholar
  12. 12.
    Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35PubMedCrossRefGoogle Scholar
  13. 13.
    Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11(8):353–361PubMedCrossRefGoogle Scholar
  14. 14.
    Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20):3589–3594PubMedCrossRefGoogle Scholar
  15. 15.
    Bai X, Jiang Y (2010) Key factors in mTOR regulation. Cell Mol Life Sci 67(2):239–253PubMedCrossRefGoogle Scholar
  16. 16.
    Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22(2):169–176PubMedCrossRefGoogle Scholar
  17. 17.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307(5712):1098–1101PubMedCrossRefGoogle Scholar
  18. 18.
    Janes MR, Fruman DA (2010) Targeting TOR dependence in cancer. Oncotarget 1(1):69–76PubMedGoogle Scholar
  19. 19.
    Weigelt B, Warne PH, Downward J (2011) PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30(29):3222–3233PubMedCrossRefGoogle Scholar
  20. 20.
    Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3(4):371–377PubMedCrossRefGoogle Scholar
  21. 21.
    Awada A, Cardoso F, Fontaine C, Dirix L, De Greve J, Sotiriou C, Steinseifer J, Wouters C, Tanaka C, Zoellner U, Tang P, Piccart M (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44(1):84–91PubMedCrossRefGoogle Scholar
  22. 22.
    deGraffenried LA, Friedrichs WE, Russell DH, Donzis EJ, Middleton AK, Silva JM, Roth RA, Hidalgo M (2004) Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res 10(23):8059–8067PubMedCrossRefGoogle Scholar
  23. 23.
    Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X (2010) Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22(10):1469–1476PubMedCrossRefGoogle Scholar
  24. 24.
    Ma D, Bai X, Zou H, Lai Y, Jiang Y (2010) Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J Biol Chem 285(12):8621–8627PubMedCrossRefGoogle Scholar
  25. 25.
    Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318(5852):977–980PubMedCrossRefGoogle Scholar
  26. 26.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166PubMedCrossRefGoogle Scholar
  27. 27.
    Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318PubMedCrossRefGoogle Scholar
  28. 28.
    Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8(11):851–864PubMedCrossRefGoogle Scholar
  29. 29.
    Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6(1):7–10PubMedCrossRefGoogle Scholar
  30. 30.
    Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968PubMedCrossRefGoogle Scholar
  31. 31.
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175PubMedCrossRefGoogle Scholar
  32. 32.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168PubMedCrossRefGoogle Scholar
  33. 33.
    Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K (2011) Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286(37):32651–32660PubMedCrossRefGoogle Scholar
  34. 34.
    Sarbassov DD, Sabatini DM (2005) Redox regulation of the nutrient-sensitive raptor–mTOR pathway and complex. J Biol Chem 280(47):39505–39509PubMedCrossRefGoogle Scholar
  35. 35.
    Zavodovskaya M, Campbell MJ, Maddux BA, Shiry L, Allan G, Hodges L, Kushner P, Kerner JA, Youngren JF, Goldfine ID (2008) Nordihydroguaiaretic acid (NDGA), an inhibitor of the HER2 and IGF-1 receptor tyrosine kinases, blocks the growth of HER2-overexpressing human breast cancer cells. J Cell Biochem 103(2):624–635PubMedCrossRefGoogle Scholar
  36. 36.
    Rowe DL, Ozbay T, Bender LM, Nahta R (2008) Nordihydroguaiaretic acid, a cytotoxic insulin-like growth factor-I receptor/HER2 inhibitor in trastuzumab-resistant breast cancer. Mol Cancer Ther 7(7):1900–1908PubMedCrossRefGoogle Scholar
  37. 37.
    Li F, Pham JD, Anderson MO, Youngren JF (2009) Nordihydroguaiaretic acid inhibits transforming growth factor beta type 1 receptor activity and downstream signaling. Eur J Pharmacol 616(1–3):31–37PubMedCrossRefGoogle Scholar
  38. 38.
    Carew JS, Kelly KR, Nawrocki ST (2011) Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 6(1):17–27PubMedCrossRefGoogle Scholar
  39. 39.
    Lee MS, Kim D, Jo K, Hwang JK (2010) Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice. Biochem Biophys Res Commun 401(1):92–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yue Zhang
    • 1
  • Song Xu
    • 1
    • 2
  • Jun Lin
    • 1
  • Guangyu Yao
    • 3
  • Zelong Han
    • 1
  • Bo Liang
    • 1
  • Zhenhong Zou
    • 1
  • Zhenguo Chen
    • 1
  • Qiancheng Song
    • 1
  • Yifan Dai
    • 4
  • Tianming Gao
    • 5
  • Anling Liu
    • 1
  • Xiaochun Bai
    • 1
  1. 1.Department of Cell BiologySouthern Medical UniversityGuangzhouChina
  2. 2.Department of Spine Surgerythe Third Affiliated Hospital, Southern Medical UniversityGuangzhouChina
  3. 3.Breast Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  4. 4.Center of Metabolic Disease ResearchNanjing Medical UniversityNanjingChina
  5. 5.Department of Anatomy and NeurobiologySouthern Medical UniversityGuangzhouChina

Personalised recommendations