Advertisement

Breast Cancer Research and Treatment

, Volume 136, Issue 1, pp 315–318 | Cite as

Non-random distribution of breast cancer susceptibility loci on human chromosomes

  • Khyber Saify
  • Mostafa Saadat
Letter to the Editor

To the Editor,

Many case–control studies have recently been published which investigate the association between single nucleotide polymorphisms of candidate genes and breast cancer risk. These studies, however, have yielded apparently conflicting results. The inconsistency could be partly due to the insufficient power, the small effect of polymorphisms in low-penetrance genes on breast cancer risk and the false-positive results. Meta-analysis has been widely performed to assess the association between a particular gene variants and breast cancer risk. In recent years, relatively a lot of meta-analysis was published indicating that polymorphisms were associated with the susceptibility to breast cancer at least in a specific ethnic group [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66...

Keywords

Breast Cancer Breast Cancer Risk Human Chromosome Cancer Susceptibility Susceptible Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are indebted to Dr. Maryam Ansari-Lari for critical reading of the manuscript and for her contribution in discussion. This study was supported by Shiraz University.

Conflict of interest

None.

References

  1. 1.
    Liu C, Liu L (2011) Polymorphisms in three obesity-related genes (LEP, LEPR, and PON1) and breast cancer risk: a meta-analysis. Tumour Biol 32:1233–1240PubMedCrossRefGoogle Scholar
  2. 2.
    Qiu LX, Yuan H, Yu KD, Mao C, Chen B, Zhan P, Xue K, Zhang J, Hu XC (2010) Glutathione S-transferase M1 polymorphism and breast cancer susceptibility: a meta-analysis involving 46,281 subjects. Breast Cancer Res Treat 121:703–708PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Qiu LX, Wang ZH, Wu XH, Liu XJ, Wang BY, Hu XC (2010) MTHFR C677T polymorphism associated with breast cancer susceptibility: a meta-analysis involving 15,260 cases and 20,411 controls. Breast Cancer Res Treat 123:549–555PubMedCrossRefGoogle Scholar
  4. 4.
    Yu KD, Chen AX, Yang C, Qiu LX, Fan L, Xu WH, Shao ZM (2010) Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:251–257PubMedCrossRefGoogle Scholar
  5. 5.
    Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, Su L (2011) Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: a comprehensive meta-analysis. PLoS ONE 6:e14749PubMedCrossRefGoogle Scholar
  6. 6.
    Paracchini V, Raimondi S, Gram IT, Kang D, Kocabas NA, Kristensen VN, Li D, Parl FF, Rylander-Rudqvist T, Soucek P, Zheng W, Wedren S, Taioli E (2007) Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review. Am J Epidemiol 165:115–125PubMedCrossRefGoogle Scholar
  7. 7.
    Liu X, Wang Z, Yu J, Lei G, Wang S (2010) Three polymorphisms in interleukin-1β gene and risk for breast cancer: a meta-analysis. Breast Cancer Res Treat 124:821–825PubMedCrossRefGoogle Scholar
  8. 8.
    Sergentanis TN, Economopoulos KP (2010) Association of two CASP8 polymorphisms with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 120:229–234PubMedCrossRefGoogle Scholar
  9. 9.
    Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149PubMedCrossRefGoogle Scholar
  10. 10.
    Yao L, Qiu LX, Yu L, Yang Z, Yu XJ, Zhong Y, Yu L (2010) The association between TA-repeat polymorphism in the promoter region of UGT1A1 and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:879–882PubMedCrossRefGoogle Scholar
  11. 11.
    Francisco G, Menezes PR, Eluf-Neto J, Chammas R (2008) XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis. Eur J Hum Genet 16:724–734PubMedCrossRefGoogle Scholar
  12. 12.
    Hu J, Zhou GW, Wang N, Wang YJ (2010) GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:425–431PubMedCrossRefGoogle Scholar
  13. 13.
    Xi B, Zeng T, Liu L, Liang Y, Liu W, Hu Y, Li J (2011) Association between polymorphisms of the renin-angiotensin system genes and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 130:561–568PubMedCrossRefGoogle Scholar
  14. 14.
    Wang N, Zhou R, Wang C, Guo X, Chen Z, Yang S, Li Y (2012) 251 T/A polymorphism of the interleukin-8 gene and cancer risk: a huge review and meta-analysis based on 42 case-control studies. Mol Biol Rep 39:2831–2841PubMedCrossRefGoogle Scholar
  15. 15.
    Xu W, Li Y, Wang X, Chen B, Wang Y, Liu S, Xu J, Zhao W, Wu J (2010) FGFR4 transmembrane domain polymorphism and cancer risk: a meta-analysis including 8555 subjects. Eur J Cancer 46:3332–3338PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou P, Li JP, Zhang C (2011) Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: appraisal of a recent meta-analysis. Breast Cancer Res Treat 126:253–256PubMedCrossRefGoogle Scholar
  17. 17.
    Qiu LX, Zhang J, Zhu XD, Zheng CL, Sun S, Wang ZH, Zhao XM, Wang JL, Wang LP, Yu H, Xue K, Hu XC (2010) The p21 Ser31Arg polymorphism and breast cancer risk: a meta-analysis involving 51,236 subjects. Breast Cancer Res Treat 124:475–479PubMedCrossRefGoogle Scholar
  18. 18.
    Li N, Dong J, Hu Z, Shen H, Dai M (2010) Potentially functional polymorphisms in ESR1 and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:177–184PubMedCrossRefGoogle Scholar
  19. 19.
    Kirchhoff T, Chen ZQ, Gold B, Pal P, Gaudet MM, Kosarin K, Levine DA, Gregersen P, Spencer S, Harlan M, Robson M, Klein RJ, Hudis CA, Norton L, Dean M, Offit K (2009) The 6q22.33 locus and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 18:2468–2475PubMedCrossRefGoogle Scholar
  20. 20.
    Wang S, Wang F, Shi X, Dai J, Peng Y, Guo X, Wang X, Shen H, Hu Z (2009) Association between manganese superoxide dismutase (MnSOD) Val-9Ala polymorphism and cancer risk—A meta-analysis. Eur J Cancer 45:2874–2881PubMedCrossRefGoogle Scholar
  21. 21.
    Qiu LX, Yao L, Yuan H, Mao C, Chen B, Zhan P, Xue K, Zhang J, Hu XC (2010) IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls. Breast Cancer Res Treat 122:867–871PubMedCrossRefGoogle Scholar
  22. 22.
    Lu PH, Wei MX, Yang J, Liu X, Tao GQ, Shen W, Chen MB (2011) Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis. Breast Cancer Res Treat 125:537–543PubMedCrossRefGoogle Scholar
  23. 23.
    Saadat M (2012) Paraoxonase 1 genetic polymorphisms and susceptibility to breast cancer: a meta-analysis. Cancer Epidemiol 36:e101–e103PubMedCrossRefGoogle Scholar
  24. 24.
    Zintzaras E, Grammatikou M, Kitsios GD, Doxani C, Zdoukopoulos N, Papandreou C, Patrikidou A (2010) Polymorphisms of the endothelial nitric oxide synthase gene in breast cancer: a genetic association study and meta-analysis. J Hum Genet 55:743–748PubMedCrossRefGoogle Scholar
  25. 25.
    Hao Y, Montiel R, Huang Y (2010) Endothelial nitric oxide synthase (eNOS) 894 G>T polymorphism is associated with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:809–813PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang J, Qiu LX, Wang ZH, Wang JL, He SS, Hu XC (2010) NAT2 polymorphisms combining with smoking associated with breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 123:877–883PubMedCrossRefGoogle Scholar
  27. 27.
    Mcinerney N, Colleran G, Rowan A, Walther A, Barclay E, Spain S, Jones AM, Tuohy S, Curran C, Miller N, Kerin M, Tomlinson I, Sawyer E (2009) Low penetrance breast cancer predisposition SNPs are site specific. Breast Cancer Res Treat 117:151–159PubMedCrossRefGoogle Scholar
  28. 28.
    Liao RY, Mao C, Qiu LX, Ding H, Chen Q, Pan HF (2010) TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls. Mol Biol Rep 37:3227–3232PubMedCrossRefGoogle Scholar
  29. 29.
    Wang J, Bi J, Liu X, Li K, Di J, Wang B (2012) Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case-control studies. Mol Biol Rep 39:4571–4579PubMedCrossRefGoogle Scholar
  30. 30.
    Shen W, Cao X, Xi L, Deng L (2012) CXCL12 G801A polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep 39:2039–2044PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Z, Xue H, Gong W, Wang M, Yuan L, Han S, Zhang Z (2009) FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies. Carcinogenesis 30:487–493PubMedCrossRefGoogle Scholar
  32. 32.
    Ye Z, Parry JM (2002) The CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis. Mutagenesis 17:119–126PubMedCrossRefGoogle Scholar
  33. 33.
    Jia C, Cai Y, Ma Y, Fu D (2010) Quantitative assessment of the effect of FGFR2 gene polymorphism on the risk of breast cancer. Breast Cancer Res Treat 124:521–528PubMedCrossRefGoogle Scholar
  34. 34.
    Weston A, Godbold JH (1997) Polymorphisms of H-ras-1 and p53 in breast cancer and lung cancer: a meta-analysis. Environ Health Perspect 4:919–926Google Scholar
  35. 35.
    Zhang C, Lv GQ, Yu XM, Gu YL, Li JP, Du LF, Zhou P (2011) Current evidence on the relationship between HRAS1 polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 128:467–472PubMedCrossRefGoogle Scholar
  36. 36.
    Sergentanis TN, Economopoulos KP (2011) Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep 38:4955–4963PubMedCrossRefGoogle Scholar
  37. 37.
    Lu S, Wang Z, Cui D, Liu H, Hao X (2011) Glutathione S-transferase P1 Ile105Val polymorphism and breast cancer risk: a meta-analysis involving 34,658 subjects. Breast Cancer Res Treat 125:253–259PubMedCrossRefGoogle Scholar
  38. 38.
    Johnatty SE, Spurdle AB, Beesley J, Chen X, Hopper JL, Duffy DL, Chenevix-Trench G (2008) Kathleen Cuningham Consortium for Research in Familial Breast Cancer. Progesterone receptor polymorphisms and risk of breast cancer: results from two Australian breast cancer studies. Breast Cancer Res Treat 109:91–99PubMedCrossRefGoogle Scholar
  39. 39.
    Mao C, Chung VC, He BF, Luo RC, Tang JL (2012) Association between ATM 5557G>A polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep 39:1113–1118PubMedCrossRefGoogle Scholar
  40. 40.
    Raimondi S, Johansson H, Maisonneuve P, Gandini S (2009) Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 30:1170–1180PubMedCrossRefGoogle Scholar
  41. 41.
    Qiu LX, Wang Y, Xia ZG, Xi B, Mao C, Wang JL, Wang BY, Lv FF, Wu XH, Hu LQ (2011) miR-196a2 C allele is a low-penetrant risk factor for cancer development. Cytokine 56:589–592PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao E, Cui D, Yuan L, Lu W (2012) MDM2 SNP309 polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep 39:3471–3477PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou GW, Hu J, Peng XD, Li Q (2011) RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125:529–535PubMedCrossRefGoogle Scholar
  44. 44.
    Yu KD, Rao NY, Chen AX, Fan L, Yang C, Shao ZM (2011) A systematic review of the relationship between polymorphic sites in the estrogen receptor-beta (ESR2) gene and breast cancer risk. Breast Cancer Res Treat 126:37–45PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao T, Lv J, Zhao J, Nzekebaloudou M (2009) Hypoxia-inducible factor-1alpha gene polymorphisms and cancer risk: a meta-analysis. J Exp Clin Cancer Res 28:159PubMedCrossRefGoogle Scholar
  46. 46.
    He XF, Wei W, Su J, Yang ZX, Liu Y, Zhang Y, Ding DP, Wang W (2012) Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case-control studies. Mol Biol Rep 39:5125–5134PubMedCrossRefGoogle Scholar
  47. 47.
    Gao LB, Pan XM, Li LJ, Liang WB, Zhu Y, Zhang LS, Wei YG, Tang M, Zhang L (2011) RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Res Treat 125:827–835PubMedCrossRefGoogle Scholar
  48. 48.
    Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:459–469PubMedCrossRefGoogle Scholar
  49. 49.
    Ding DP, He XF, Zhang Y (2011) Lack of association between XPG Asp1104His and XPF Arg415Gln polymorphism and breast cancer risk: a meta-analysis of case-control studies. Breast Cancer Res Treat 129:203–209PubMedCrossRefGoogle Scholar
  50. 50.
    Jiang Y, Zhou L, Yan T, Shen Z, Shao Z, Lu J (2010) Association of sulfotransferase SULT1A1 with breast cancer risk: a meta-analysis of case-control studies with subgroups of ethnic and menopausal statue. J Exp Clin Cancer Res 29:101PubMedCrossRefGoogle Scholar
  51. 51.
    Zhou P, Du LF, Lv GQ, Yu XM, Gu YL, Li JP, Zhang C (2011) Current evidence on the relationship between four polymorphisms in the matrix metalloproteinases (MMP) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 127:813–818PubMedCrossRefGoogle Scholar
  52. 52.
    Yuan W, Xu L, Chen W, Wang L, Fu Z, Pang D, Li D (2011) Evidence on the association between NQO1 Pro187Ser polymorphism and breast cancer risk in the current studies: a meta-analysis. Breast Cancer Res Treat 125:467–472PubMedCrossRefGoogle Scholar
  53. 53.
    Hu Z, Li X, Qu X, He Y, Ring BZ, Song E, Su L (2010) Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: a meta-analysis. Carcinogenesis 31:643–647PubMedCrossRefGoogle Scholar
  54. 54.
    Yao L, Cao LH, Qiu LX, Yu L (2010) The association between HSD17B1 Ser312Gly polymorphism and breast cancer risk: a meta-analysis including 31,053 subjects. Breast Cancer Res Treat 123:577–580PubMedCrossRefGoogle Scholar
  55. 55.
    Lu S, Wang Z, Liu H, Hao X (2010) HER2 Ile655Val polymorphism contributes to breast cancer risk: evidence from 27 case-control studies. Breast Cancer Res Treat 124:771–778PubMedCrossRefGoogle Scholar
  56. 56.
    Wang J, Wang B, Bi J, Di J (2011) The association between two polymorphisms in the TYMS gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 128:203–209PubMedCrossRefGoogle Scholar
  57. 57.
    Ma X, Chen C, Xiong H, Li Y (2010) Transforming growth factorβ1 L10P variant plays an active role on the breast cancer susceptibility in Caucasian: evidence from 10,392 cases and 11,697 controls. Breast Cancer Res Treat 124:453–457PubMedCrossRefGoogle Scholar
  58. 58.
    Saadat M, Ansari-Lari M (2009) Polymorphism of XRCC1 (at codon 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res Treat 115:137–144PubMedCrossRefGoogle Scholar
  59. 59.
    Huang Y, Li L, Yu L (2009) XRCC1 Arg399Gln, Arg194Trp and Arg280His polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis 24:331–339PubMedCrossRefGoogle Scholar
  60. 60.
    Saadat M (2010) Haplotype analysis of XRCC1 (at codons 194 and 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res Treat 124:785–791PubMedCrossRefGoogle Scholar
  61. 61.
    Qiu LX, Yao L, Zhang J, Zhu XD, Zhao XM, Xue K, Mao C, Chen B, Zhan P, Yuan H, Hu XC (2010) XPD Lys751Gln polymorphism and breast cancer susceptibility: a meta-analysis involving 28,709 subjects. Breast Cancer Res Treat 124:229–235PubMedCrossRefGoogle Scholar
  62. 62.
    Yao L, Qiu LX, Yu L, Yang Z, Yu XJ, Zhong Y, Hu XC, Yu L (2010) The association between ERCC2 Asp312Asn polymorphism and breast cancer risk: a meta-analysis involving 22,766 subjects. Breast Cancer Res Treat 123:227–231PubMedCrossRefGoogle Scholar
  63. 63.
    García-Closas M, Egan KM, Newcomb PA, Brinton LA, Titus-Ernstoff L, Chanock S, Welch R, Lissowska J, Peplonska B, Szeszenia-Dabrowska N, Zatonski W, Bardin-Mikolajczak A, Struewing JP (2006) Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet 19:376–388CrossRefGoogle Scholar
  64. 64.
    Saadat M (2012) Apolipoprotein E (APOE) polymorphisms and susceptibility to breast cancer: a meta-analysis. Cancer Res Treat 44:121–126PubMedCrossRefGoogle Scholar
  65. 65.
    Sun H, Bai J, Chen F, Jin Y, Yu Y, Fu S (2011) Lack of an association between AURKA T91A polymorphisms and breast cancer: a meta-analysis involving 32,141 subjects. Breast Cancer Res Treat 125:175–179PubMedCrossRefGoogle Scholar
  66. 66.
    Mao C, Wang XW, Qiu LX, Liao RY, Ding H, Chen Q (2010) Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: a meta-analysis of 25,627 cases and 34,222 controls. Breast Cancer Res Treat 121:719–725PubMedCrossRefGoogle Scholar
  67. 67.
    Sergentanis TN, Economopoulos KP (2010) GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:195–202PubMedCrossRefGoogle Scholar
  68. 68.
    Liu C, Wang Y, Wang QS, Wang YJ (2012) The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev 13:1355–1360PubMedCrossRefGoogle Scholar
  69. 69.
    Xu L, Ju XB, Li P, Wang J, Shi ZM, Zheng MJ, Xue DD, Xu YJ, Yin YM, Wang S, You YP (2012) Association between the Ku70-1310C/G promoter polymorphism and cancer risk: a meta-analysis. Asian Pac J Cancer Prev 13:683–687PubMedCrossRefGoogle Scholar
  70. 70.
    Saccone S, De Sario A, Della Valle G, Bernardi G (1992) The highest gene concentrations in the human genome are in T-bands of metaphase chromosomes. Proc Natl Acad Sci USA 89:4913–4917PubMedCrossRefGoogle Scholar
  71. 71.
    Saccone S, Caccio S, Kusuda J, Andreozzi L, Bernardi G (1996) Identification of the generichest bands in human chromosomes. Gene 174:85–94PubMedCrossRefGoogle Scholar
  72. 72.
    Mouchiroud D, D’Onofrio G, Aissani B, Macaya G, Gautier C, Bernardi G (1991) The distribution of genes in the human genome. Gene 100:181–187PubMedCrossRefGoogle Scholar
  73. 73.
    Musio A, Mariani T, Vezzoni P, Frattini A (2002) Heterogeneous gene distribution reflects human genome complexity as detected at the cytogenetic level. Cancer Genetics Cytogenet 134:168–171CrossRefGoogle Scholar
  74. 74.
    Rafiee L, Mohsenzadeh S, Saadat M (2008) Nonrandom gene distribution on human chromosomes. EXCLI Journal 7:151–153Google Scholar
  75. 75.
    Hecht F (1988) Fragile sites, cancer chromosome breakpoints, and oncogenes all cluster in light G bands. Cancer Genet Cytogenet 31:17–24PubMedCrossRefGoogle Scholar
  76. 76.
    Lima-de-Faria A, Mitelman F (1988) The chromosome territory of human oncogenes. Bioscience Rep 6:349–354CrossRefGoogle Scholar
  77. 77.
    Lima-de-Faria A, Mitelman F, Blomberg J, Pfeifer-Ohlsson S (1991) Telomeric location of retroviral oncogenes in humans. Hereditas 114:207–211PubMedCrossRefGoogle Scholar
  78. 78.
    Tai JJ, Hou CD, Wang-Wuu S, Wang CH, Leu SY, Wuu KD (1993) A method for testing the nonrandomness of chromosomal breakpoints. Cytogenet Cell Genet 63:147–150PubMedCrossRefGoogle Scholar
  79. 79.
    ISCN (1981) An international system for human cytogenetic nomenclature-high resolution banding. Cytogenet Cell Genet 31:1–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of BiologyCollege of Sciences, Shiraz UniversityShirazIran
  2. 2.Institute of BiotechnologyShiraz UniversityShirazIran

Personalised recommendations