Breast Cancer Research and Treatment

, Volume 134, Issue 2, pp 709–717 | Cite as

Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy

  • William Jacot
  • Stéphane Pouderoux
  • Simon Thezenas
  • Angélique Chapelle
  • Jean-Pierre Bleuse
  • Gilles Romieu
  • Pierre-Jean Lamy
Clinical Trial


Patients with locally advanced breast cancer treated with neoadjuvant chemotherapy are at risk of cancer treatment–induced bone loss and consequently of increased skeletal morbidity. In addition, this situation could be worsened by the fact that only a minority of patients with breast cancer have sufficient vitamin D. A comprehensive evaluation of bone homeostasis is critical in this context. We retrospectively evaluated the serum levels of calcium, vitamin D, TRAIL, RANK ligand (RANKL), Osteoprotegerin (OPG), Bone TRAP, CrossLaps and DKK1 in 77 patients (median age: 50 years; range 25–74), with locally advanced breast cancer treated in our institute with anthracyclines-taxane neoadjuvant chemotherapy (7 cycles of 21 days/each) between March 2007 and August 2008. Serum samples were collected before the first (baseline) and the last treatment cycle. Variations and correlations between biomarker levels were evaluated. At baseline, 79.5 % of patients had vitamin D insufficiency (<30 ng/ml), increasing to 97.4 % at the end of the neoadjuvant chemotherapy (p < 0.0001). Calcium and RANKL serum concentrations were also significantly decreased, while OPG was significantly increased, resulting in lower RANKL/OPG ratio. Calcium and vitamin D, RANKL and vitamin D and RANKL and OPG levels were significantly correlated (Spearman’s coefficient r = 0.2721, p = 0.0006; r = 0.1916, p = 0.002; and r = −0.179, p = 0.03, respectively). Nearly all included patients suffered from vitamin D insufficiency by the end of the neoadjuvant chemotherapy with changes in the calcium/RANKL/OPG axis that are evocative of deregulation of a functional regulatory mechanism. Further studies are needed to determine how drugs modulate this regulatory mechanism to preserve bone homeostasis in patients with breast cancer.


Breast cancer Vitamin D Neoadjuvant chemotherapy Serum RANKL Osteoprotegerin Calcium 



This study was supported by an unrestricted research grant from Amgen France and by the Centre Régional de Lutte Contre le Cancer Val d’Aurelle.

Conflict of interest

Honoraria: Dr Stéphane Pouderoux, AMGEN.

Ethical standards

This project was performed in compliance with the relevant ethical standards in France.


  1. 1.
    Brufsky AM (2008) Cancer treatment-induced bone loss: pathophysiology and clinical perspectives. Oncologist 13(2):187–195PubMedCrossRefGoogle Scholar
  2. 2.
    Pfeilschifter J, Diel IJ (2000) Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol 18(7):1570–1593PubMedGoogle Scholar
  3. 3.
    Chen Z, Maricic M, Bassford TL, Pettinger M, Ritenbaugh C, Lopez AM, Barad DH, Gass M, Leboff MS (2005) Fracture risk among breast cancer survivors: results from the Women’s Health Initiative Observational Study. Arch Intern Med 165(5):552–558PubMedCrossRefGoogle Scholar
  4. 4.
    Mincey BA (2003) Osteoporosis in women with breast cancer. Curr Oncol Rep 5(1):53–57PubMedCrossRefGoogle Scholar
  5. 5.
    Saarto T, Blomqvist C, Valimaki M, Makela P, Sarna S, Elomaa I (1997) Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 15(4):1341–1347PubMedGoogle Scholar
  6. 6.
    Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19(14):3306–3311PubMedGoogle Scholar
  7. 7.
    Goodwin PJ, Ennis M, Pritchard KI, Koo J, Hood N (2009) Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol 27(23):3757–3763PubMedCrossRefGoogle Scholar
  8. 8.
    Sinotte M, Diorio C, Berube S, Pollak M, Brisson J (2009) Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr 89(2):634–640PubMedCrossRefGoogle Scholar
  9. 9.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281PubMedCrossRefGoogle Scholar
  10. 10.
    Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293(18):2257–2264PubMedCrossRefGoogle Scholar
  11. 11.
    Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370(9588):657–666PubMedCrossRefGoogle Scholar
  12. 12.
    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of vitamin D on falls: a meta-analysis. JAMA 291(16):1999–2006PubMedCrossRefGoogle Scholar
  13. 13.
    Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, Bassford T, Beresford SA, Black HR, Blanchette P et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354(7):669–683PubMedCrossRefGoogle Scholar
  14. 14.
    Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84(1):18–28PubMedGoogle Scholar
  15. 15.
    Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O’Sullivan MJ, Margolis KL, Ockene JK, Phillips L, Pottern L et al (2006) Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med 354(7):684–696PubMedCrossRefGoogle Scholar
  16. 16.
    Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 85(6):1586–1591PubMedGoogle Scholar
  17. 17.
    Jensen SS, Madsen MW, Lukas J, Binderup L, Bartek J (2001) Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol 15(8):1370–1380PubMedCrossRefGoogle Scholar
  18. 18.
    Colston KW, Hansen CM (2002) Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer. Endocr Relat Cancer 9(1):45–59PubMedCrossRefGoogle Scholar
  19. 19.
    Wang D, Dubois RN (2004) Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 31(1 Suppl 3):64–73PubMedCrossRefGoogle Scholar
  20. 20.
    Krishnan AV, Swami S, Feldman D (2010) Vitamin D and breast cancer: inhibition of estrogen synthesis and signaling. J Steroid Biochem Mol Biol 121(1–2):343–348PubMedCrossRefGoogle Scholar
  21. 21.
    Garland CF, Garland FC, Gorham ED (1999) Calcium and vitamin D. Their potential roles in colon and breast cancer prevention. Ann N Y Acad Sci 889:107–119PubMedCrossRefGoogle Scholar
  22. 22.
    Yao S, Zirpoli G, Bovbjerg DH, Jandorf L, Hong CC, Zhao H, Sucheston LE, Tang L, Roberts M, Ciupak G et al (2012) Variants in the vitamin D pathway, serum levels of vitamin D, and estrogen receptor negative breast cancer among African-American women: a case–control study. Breast Cancer Res 14(2):R58PubMedCrossRefGoogle Scholar
  23. 23.
    Shao T, Klein P, Grossbard ML (2012) Vitamin D and breast cancer. Oncologist 17(1):36–45PubMedCrossRefGoogle Scholar
  24. 24.
    Lin J, Manson JE, Lee IM, Cook NR, Buring JE, Zhang SM (2007) Intakes of calcium and vitamin D and breast cancer risk in women. Arch Intern Med 167(10):1050–1059PubMedCrossRefGoogle Scholar
  25. 25.
    Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, Willett WC (2002) Intake of dairy products, calcium, and vitamin d and risk of breast cancer. J Natl Cancer Inst 94(17):1301–1311PubMedCrossRefGoogle Scholar
  26. 26.
    Freedman DM, Chang SC, Falk RT, Purdue MP, Huang WY, McCarty CA, Hollis BW, Graubard BI, Berg CD, Ziegler RG (2008) Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 17(4):889–894PubMedCrossRefGoogle Scholar
  27. 27.
    Abbas S, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, Flesch-Janys D, Chang-Claude J (2008) Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer—results of a large case–control study. Carcinogenesis 29(1):93–99PubMedCrossRefGoogle Scholar
  28. 28.
    Garland CF, Gorham ED, Mohr SB, Grant WB, Giovannucci EL, Lipkin M, Newmark H, Holick MF, Garland FC (2007) Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol 103(3–5):708–711PubMedCrossRefGoogle Scholar
  29. 29.
    Janowsky EC, Lester GE, Weinberg CR, Millikan RC, Schildkraut JM, Garrett PA, Hulka BS (1999) Association between low levels of 1,25-dihydroxyvitamin D and breast cancer risk. Public Health Nutr 2(3):283–291PubMedCrossRefGoogle Scholar
  30. 30.
    Abbas S, Linseisen J, Chang-Claude J (2007) Dietary vitamin D and calcium intake and premenopausal breast cancer risk in a German case–control study. Nutr Cancer 59(1):54–61PubMedCrossRefGoogle Scholar
  31. 31.
    Bertone-Johnson ER (2007) Prospective studies of dietary vitamin D and breast cancer: more questions raised than answered. Nutr Rev 65(10):459–466PubMedCrossRefGoogle Scholar
  32. 32.
    Chlebowski RT, Johnson KC, Kooperberg C, Pettinger M, Wactawski-Wende J, Rohan T, Rossouw J, Lane D, O’Sullivan MJ, Yasmeen S et al (2008) Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst 100(22):1581–1591PubMedCrossRefGoogle Scholar
  33. 33.
    Crew KD, Shane E, Cremers S, McMahon DJ, Irani D, Hershman DL (2009) High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J Clin Oncol 27(13):2151–2156PubMedCrossRefGoogle Scholar
  34. 34.
    Engel P, Fagherazzi G, Boutten A, Dupre T, Mesrine S, Boutron-Ruault MC, Clavel-Chapelon F (2010) Serum 25(OH) vitamin D and risk of breast cancer: a nested case–control study from the French E3N cohort. Cancer Epidemiol Biomarkers Prev 19(9):2341–2350PubMedCrossRefGoogle Scholar
  35. 35.
    Lowe LC, Guy M, Mansi JL, Peckitt C, Bliss J, Wilson RG, Colston KW (2005) Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur J Cancer 41(8):1164–1169PubMedCrossRefGoogle Scholar
  36. 36.
    Khan QJ, Reddy PS, Kimler BF, Sharma P, Baxa SE, O’Dea AP, Klemp JR, Fabian CJ (2010) Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res Treat 119(1):111–118PubMedCrossRefGoogle Scholar
  37. 37.
    Iqbal SJ (1994) Vitamin D metabolism and the clinical aspects of measuring metabolites. Ann Clin Biochem 31(Pt 2):109–124PubMedGoogle Scholar
  38. 38.
    Holick MF (1995) Defects in the synthesis and metabolism of vitamin D. Exp Clin Endocrinol Diabetes 103(4):219–227PubMedCrossRefGoogle Scholar
  39. 39.
    Hollis BW (1996) Assessment of vitamin D nutritional and hormonal status: what to measure and how to do it. Calcif Tissue Int 58(1):4–5PubMedGoogle Scholar
  40. 40.
    Tangpricha V, Pearce EN, Chen TC, Holick MF (2002) Vitamin D insufficiency among free-living healthy young adults. Am J Med 112(8):659–662PubMedCrossRefGoogle Scholar
  41. 41.
    Mann GB, Kang YC, Brand C, Ebeling PR, Miller JA (2009) Secondary causes of low bone mass in patients with breast cancer: a need for greater vigilance. J Clin Oncol 27(22):3605–3610PubMedCrossRefGoogle Scholar
  42. 42.
    Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, Prockop DJ (2005) How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann N Y Acad Sci 1049:97–106PubMedCrossRefGoogle Scholar
  43. 43.
    Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494PubMedCrossRefGoogle Scholar
  44. 44.
    Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clezardin P, Garnero P (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97(7):964–970PubMedGoogle Scholar
  45. 45.
    Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325PubMedCrossRefGoogle Scholar
  46. 46.
    Calvo MS, Eyre DR, Gundberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17(4):333–368PubMedGoogle Scholar
  47. 47.
    Jukkola A, Tahtela R, Tholix E, Vuorinen K, Blanco G, Risteli L, Risteli J (1997) Aggressive breast cancer leads to discrepant serum levels of the type I procollagen propeptides PINP and PICP. Cancer Res 57(24):5517–5520PubMedGoogle Scholar
  48. 48.
    Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34(3):285–290PubMedCrossRefGoogle Scholar
  49. 49.
    Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90(11):6323–6331PubMedCrossRefGoogle Scholar
  50. 50.
    Dougall WC (2012) Osteoclast-dependent and -independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2):326–335PubMedCrossRefGoogle Scholar
  51. 51.
    Delmas PD (2008) Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom 11(2):325–338PubMedCrossRefGoogle Scholar
  52. 52.
    Ibrahim T, Sacanna E, Gaudio M, Mercatali L, Scarpi E, Zoli W, Serra P, Ricci R, Serra L, Kang Y et al (2011) Role of RANK, RANKL, OPG, and CXCR4 tissue markers in predicting bone metastases in breast cancer patients. Clin Breast Cancer 11(6):369–375PubMedCrossRefGoogle Scholar
  53. 53.
    Whyte MP (2006) Paget’s disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann N Y Acad Sci 1068:143–164PubMedCrossRefGoogle Scholar
  54. 54.
    Schramek D, Sigl V, Penninger JM (2011) RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 22(5):188–194PubMedCrossRefGoogle Scholar
  55. 55.
    Holen I, Shipman CM (2006) Role of osteoprotegerin (OPG) in cancer. Clin Sci 110(3):279–291PubMedCrossRefGoogle Scholar
  56. 56.
    Kawano Y, Ueno S, Abe M, Kikukawa Y, Yuki H, Iyama K, Okuno Y, Mitsuya H, Hata H (2012) TRAIL produced from multiple myeloma cells is associated with osteolytic. Oncol Rep 27(1):39–44PubMedGoogle Scholar
  57. 57.
    Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z (1995) Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg 180(3):297–306PubMedGoogle Scholar
  58. 58.
    Kim HJ, Lee YM, Ko BS, Lee JW, Yu JH, Son BH, Gong GY, Kim SB, Ahn SH (2011) Vitamin D deficiency is correlated with poor outcomes in patients with luminal-type breast cancer. Ann Surg Oncol 18(7):1830–1836PubMedCrossRefGoogle Scholar
  59. 59.
    Hillner BE, Ingle JN, Chlebowski RT, Gralow J, Yee GC, Janjan NA, Cauley JA, Blumenstein BA, Albain KS, Lipton A et al (2003) American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21(21):4042–4057PubMedCrossRefGoogle Scholar
  60. 60.
    Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, Bosserman LD, Geoghegan C, Hillner BE, Theriault RL et al (2011) American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol 29(9):1221–1227PubMedCrossRefGoogle Scholar
  61. 61.
    Peppone LJ, Huston AJ, Reid ME, Rosier RN, Zakharia Y, Trump DL, Mustian KM, Janelsins MC, Purnell JQ, Morrow GR (2011) The effect of various vitamin D supplementation regimens in breast cancer patients. Breast Cancer Res Treat 127(1):171–177PubMedCrossRefGoogle Scholar
  62. 62.
    Khan QJ, Reddy PS, Kimler BF, Sharma P, Baxa SE, O’Dea AP, Klemp JR, Fabian CJ (2010) Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res Treat 119(1):111–118PubMedCrossRefGoogle Scholar
  63. 63.
    Nogues X, Servitja S, Pena MJ, Prieto-Alhambra D, Nadal R, Mellibovsky L, Albanell J, Diez-Perez A, Tusquets I (2010) Vitamin D deficiency and bone mineral density in postmenopausal women receiving aromatase inhibitors for early breast cancer. Maturitas 66(3):291–297PubMedCrossRefGoogle Scholar
  64. 64.
    Grados F, Brazier M, Kamel S, Duver S, Heurtebize N, Maamer M, Mathieu M, Garabedian M, Sebert JL, Fardellone P (2003) Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. Joint Bone Spine 70(3):203–208PubMedCrossRefGoogle Scholar
  65. 65.
    Adami S, Giannini S, Bianchi G, Sinigaglia L, Di Munno O, Fiore CE, Minisola S, Rossini M (2009) Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 20(2):239–244PubMedCrossRefGoogle Scholar
  66. 66.
    Roux C, Bischoff-Ferrari HA, Papapoulos SE, de Papp AE, West JA, Bouillon R (2008) New insights into the role of vitamin D and calcium in osteoporosis management: an expert roundtable discussion. Curr Med Res Opin 24(5):1363–1370PubMedCrossRefGoogle Scholar
  67. 67.
    Giner M, Rios MA, Montoya MA, Vazquez MA, Naji L, Perez-Cano R (2009) RANKL/OPG in primary cultures of osteoblasts from post-menopausal women. Differences between osteoporotic hip fractures and osteoarthritis. J Steroid Biochem Mol Biol 113(1–2):46–51PubMedCrossRefGoogle Scholar
  68. 68.
    Nabipour I, Larijani B, Vahdat K, Assadi M, Jafari SM, Ahmadi E, Movahed A, Moradhaseli F, Sanjdideh Z, Obeidi N et al (2009) Relationships among serum receptor of nuclear factor-kappaB ligand, osteoprotegerin, high-sensitivity C-reactive protein, and bone mineral density in postmenopausal women: osteoimmunity versus osteoinflammatory. Menopause 16(5):950–955PubMedCrossRefGoogle Scholar
  69. 69.
    D’Amore M, Fanelli M, D’Amore S, Fontana A, Minenna G (2006) Receptor activator of NF(Kappa)B ligand/osteoprotegerin (RANKL/OPG) system and osteopontin (OPN) serum levels in a population of apulian postmenopausal women. Panminerva Med 48(4):215–221PubMedGoogle Scholar
  70. 70.
    Kim JG, Kim JH, Lee DO, Kim H, Kim JY, Suh CS, Kim SH, Choi YM (2008) Changes in the serum levels of osteoprotegerin and soluble receptor activator for nuclear factor kappaB ligand after estrogen–progestogen therapy and their relationships with changes in bone mass in postmenopausal women. Menopause 15(2):357–362PubMedCrossRefGoogle Scholar
  71. 71.
    Martini G, Gennari L, Merlotti D, Salvadori S, Franci MB, Campagna S, Avanzati A, De Paola V, Valleggi F, Nuti R (2007) Serum OPG and RANKL levels before and after intravenous bisphosphonate treatment in Paget’s disease of bone. Bone 40(2):457–463PubMedCrossRefGoogle Scholar
  72. 72.
    Zojer N, Brenner K, Beke D, Kudlacek S, Hawa G, Woloszczuk W, Hofbauer LC, Pecherstorfer M (2005) Bisphosphonate treatment does not affect serum levels of osteoprotegerin and RANKL in hypercalcemic cancer patients. Anticancer Res 25(5):3607–3612PubMedGoogle Scholar
  73. 73.
    Mountzios G, Terpos E, Syrigos K, Papadimitriou C, Papadopoulos G, Bamias A, Mavrikakis M, Dimopoulos MA (2010) Markers of bone remodeling and skeletal morbidity in patients with solid tumors metastatic to the skeleton receiving the biphosphonate zoledronic acid. Transl Res 155(5):247–255PubMedCrossRefGoogle Scholar
  74. 74.
    Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29(2):155–192PubMedCrossRefGoogle Scholar
  75. 75.
    Voorzanger-Rousselot N, Juillet F, Mareau E, Zimmermann J, Kalebic T, Garnero P (2006) Association of 12 serum biochemical markers of angiogenesis, tumour invasion and bone turnover with bone metastases from breast cancer: a crossectional and longitudinal evaluation. Br J Cancer 95(4):506–514PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • William Jacot
    • 1
  • Stéphane Pouderoux
    • 1
  • Simon Thezenas
    • 2
  • Angélique Chapelle
    • 1
  • Jean-Pierre Bleuse
    • 2
  • Gilles Romieu
    • 1
  • Pierre-Jean Lamy
    • 3
  1. 1.Département d’Oncologie MédicaleCRLC Val d’Aurelle-Paul LamarqueMontpellierFrance
  2. 2.Département de BiostatistiquesCRLC Val d’Aurelle-Paul LamarqueMontpellierFrance
  3. 3.Laboratoire de Biologie Spécialisée et OncogénétiqueCRLC Val d’Aurelle-Paul LamarqueMontpellierFrance

Personalised recommendations