Advertisement

Breast Cancer Research and Treatment

, Volume 134, Issue 3, pp 1081–1093 | Cite as

MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer

  • Chun-Wen Cheng
  • Hsiao-Wei Wang
  • Chia-Wei Chang
  • Hou-Wei Chu
  • Cheng-You Chen
  • Jyh-Cherng Yu
  • Jui-I Chao
  • Huei-Fang Liu
  • Shian-ling Ding
  • Chen-Yang Shen
Preclinical Study

Abstract

Tumor recurrence and metastasis result in an unfavorable prognosis for cancer patients. Recent studies have suggested that specific microRNAs (miRNAs) may play important roles in the development of cancer cells. However, prognostic markers and the outcome prediction of the miRNA signature in breast cancer patients have not been comprehensively assessed. The aim of this study was to identify miRNA biomarkers relating to clinicopathological features and outcome of breast cancer. A miRNA microarray analysis was performed on breast tumors of different lymph node metastasis status and with different progression signatures, indicated by overexpression of cyclin D1 and β-catenin genes, to identify miRNAs showing a significant difference in expression. The functional interaction between the candidate miRNA, miR-30a, and the target gene, Vim, which codes for vimentin, a protein involved in epithelial–mesenchymal transition, was examined using the luciferase reporter assay, western blotting, and migration and invasion assays. The association between the decreased miR-30a levels and breast cancer progression was examined in a survival analysis. miR-30a negatively regulated vimentin expression by binding to the 3′-untranslated region of Vim. Overexpression of miR-30a suppressed the migration and invasiveness phenotypes of breast cancer cell lines. Moreover, reduced tumor expression of miR-30a in breast cancer patients was associated with an unfavorable outcome, including late tumor stage, lymph node metastasis, and worse progression (mortality and recurrence) (p < 0.05). In conclusion, these findings suggest a role for miR-30a in inhibiting breast tumor invasiveness and metastasis. The finding that miR-30a downmodulates vimentin expression might provide a therapeutic target for the treatment of breast cancer.

Keywords

Breast cancer MicroRNA-microarray MiR-30a Vimentin Prognosis 

Abbreviations

IDC

Invasive ductal carcinoma

EMT

Epithelial–mesenchymal transition

miRNA

microRNA

3′UTR

3′-untranslated region

LNM

Lymph node metastasis

LCM

Laser capture microdissection

qRT-PCR

Quantitative real-time reverse transcription polymerase chain reaction

DFS

Disease-free survival

OS

Overall survival

HR

Hazard ratio

OR

Odds ratio

95 % CI

95 % confidence interval

Notes

Acknowledgments

We sincerely appreciate Ms. Show-Lin Yang for her assistance in organizing our study specimens. This study was supported by research grant NSC 98-2314-B-040-009-MY3 from the National Science Council, Taipei, Taiwan.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Orlando FA, Brown KD (2009) Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol 16(8):2270–2279PubMedCrossRefGoogle Scholar
  2. 2.
    Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117(11):3155–3163PubMedCrossRefGoogle Scholar
  3. 3.
    Guarino M, Rubino B, Ballabio G (2007) The role of epithelial–mesenchymal transition in cancer pathology. Pathology 39(3):305–318PubMedCrossRefGoogle Scholar
  4. 4.
    Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134PubMedCrossRefGoogle Scholar
  5. 5.
    Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C, Ostrowski MC, Leone G (2008) Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res 68(3):937–945PubMedCrossRefGoogle Scholar
  6. 6.
    Wells A, Yates C, Shepard CR (2008) E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25(6):621–628PubMedCrossRefGoogle Scholar
  7. 7.
    Marsit CJ, Posner MR, McClean MD, Kelsey KT (2008) Hypermethylation of E-cadherin is an independent predictor of improved survival in head and neck squamous cell carcinoma. Cancer 113(7):1566–1571PubMedCrossRefGoogle Scholar
  8. 8.
    Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, Ralhan R (2008) Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast. Life Sci 83(9–10):318–325PubMedCrossRefGoogle Scholar
  9. 9.
    Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, Hamdy FC, Catto JW (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13(7):2046–2053PubMedCrossRefGoogle Scholar
  10. 10.
    Graziano F, Humar B, Guilford P (2003) The role of the E-cadherin gene (CDH1) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. Ann Oncol 14(12):1705–1713PubMedCrossRefGoogle Scholar
  11. 11.
    Braun J, Hoang-Vu C, Dralle H, Huttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29(29):4237–4244PubMedCrossRefGoogle Scholar
  12. 12.
    Vetter G, Saumet A, Moes M, Vallar L, Le Bechec A, Laurini C, Sabbah M, Arar K, Theillet C, Lecellier CH, Friederich E (2010) miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 29(31):4436–4448PubMedCrossRefGoogle Scholar
  13. 13.
    Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60PubMedCrossRefGoogle Scholar
  14. 14.
    Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol 21(3):470–479PubMedCrossRefGoogle Scholar
  15. 15.
    Ortholan C, Puissegur MP, Ilie M, Barbry P, Mari B, Hofman P (2009) MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem 16(9):1047–1061PubMedCrossRefGoogle Scholar
  16. 16.
    Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28(3–4):369–378PubMedCrossRefGoogle Scholar
  17. 17.
    Iwatsuki M, Mimori K, Fukagawa T, Ishii H, Yokobori T, Sasako M, Baba H, Mori M (2010) The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. Ann Surg Oncol 17(9):2526–2533PubMedCrossRefGoogle Scholar
  18. 18.
    Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24(6):1838–1851PubMedCrossRefGoogle Scholar
  19. 19.
    Usami Y, Satake S, Nakayama F, Matsumoto M, Ohnuma K, Komori T, Semba S, Ito A, Yokozaki H (2008) Snail-associated epithelial–mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol 215(3):330–339PubMedCrossRefGoogle Scholar
  20. 20.
    Yang PS, Yang TL, Liu CL, Wu CW, Shen CY (1997) A case-control study of breast cancer in Taiwan—a low-incidence area. Br J Cancer 75(5):752–756PubMedCrossRefGoogle Scholar
  21. 21.
    Lo YL, Yu JC, Huang CS, Tseng SL, Chang TM, Chang KJ, Wu CW, Shen CY (1998) Allelic loss of the BRCA1 and BRCA2 genes and other regions on 17q and 13q in breast cancer among women from Taiwan (area of low incidence but early onset). Int J Cancer 79(6):580–587PubMedCrossRefGoogle Scholar
  22. 22.
    Cheng TC, Chen ST, Huang CS, Fu YP, Yu JC, Cheng CW, Wu PE, Shen CY (2005) Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: a multigenic study on cancer susceptibility. Int J Cancer 113(3):345–353PubMedCrossRefGoogle Scholar
  23. 23.
    Ming-Shiean H, Yu JC, Wang HW, Chen ST, Hsiung CN, Ding SL, Wu PE, Shen CY, Cheng CW (2010) Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol 17(3):760–771PubMedCrossRefGoogle Scholar
  24. 24.
    Ding SL, Sheu LF, Yu JC, Yang TL, Chen BF, Leu FJ, Shen CY (2004) Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. Br J Cancer 90(10):1995–2001PubMedCrossRefGoogle Scholar
  25. 25.
    Hsu HM, Wang HC, Chen ST, Hsu GC, Shen CY, Yu JC (2007) Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer Epidemiol Biomarkers Prev 16(10):2024–2032PubMedCrossRefGoogle Scholar
  26. 26.
    Shen CY, Yu JC, Lo YL, Kuo CH, Yue CT, Jou YS, Huang CS, Lung JC, Wu CW (2000) Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast cancer pathogenesis. Cancer Res 60(14):3884–3892PubMedGoogle Scholar
  27. 27.
    Lo YL, Shen CY (2002) Laser capture microdissection in carcinoma analysis. Methods Enzymol 356:137–144PubMedCrossRefGoogle Scholar
  28. 28.
    Petroff BK, Phillips TA, Kimler BF, Fabian CJ (2006) Detection of biomarker gene expression by real-time polymerase chain reaction using amplified ribonucleic acids from formalin-fixed random periareolar fine needle aspirates of human breast tissue. Anal Quant Cytol Histol 28(5):297–302PubMedGoogle Scholar
  29. 29.
    Cheng CW, Yu JC, Wang HW, Huang CS, Shieh JC, Fu YP, Chang CW, Wu PE, Shen CY (2010) The clinical implications of MMP-11 and CK-20 expression in human breast cancer. Clin Chim Acta 411(3–4):234–241PubMedCrossRefGoogle Scholar
  30. 30.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedCrossRefGoogle Scholar
  31. 31.
    McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360(1):109–114PubMedCrossRefGoogle Scholar
  32. 32.
    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046PubMedCrossRefGoogle Scholar
  33. 33.
    Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, Tiron C, Lorens JB, Ivaska J (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30(12):1436–1448PubMedCrossRefGoogle Scholar
  34. 34.
    Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23(1):43–59PubMedCrossRefGoogle Scholar
  35. 35.
    Dutsch-Wicherek M, Lazar A, Tomaszewska R (2010) The potential role of MT and vimentin immunoreactivity in the remodeling of the microenvironment of parotid adenocarcinoma. Cancer Microenviron 4(1):105–113PubMedCrossRefGoogle Scholar
  36. 36.
    Sarrio D, Palacios J, Hergueta-Redondo M, Gomez-Lopez G, Cano A, Moreno-Bueno G (2009) Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 9:74PubMedCrossRefGoogle Scholar
  37. 37.
    Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17(19):3030–3042PubMedCrossRefGoogle Scholar
  38. 38.
    Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR (2009) The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology 136(3):1081–1090PubMedCrossRefGoogle Scholar
  39. 39.
    Agrawal R, Tran U, Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136(23):3927–3936PubMedCrossRefGoogle Scholar
  40. 40.
    Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130(9):2044–2053PubMedCrossRefGoogle Scholar
  41. 41.
    Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23(3):806–812PubMedCrossRefGoogle Scholar
  42. 42.
    Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, Desponts C, Teitell M, Baffa R, Aqeilan R, Iorio MV, Taccioli C, Garzon R, Di Leva G, Fabbri M, Catozzi M, Previati M, Ambs S, Palumbo T, Garofalo M, Veronese A, Bottoni A, Gasparini P, Harris CC, Visone R, Pekarsky Y, de la Chapelle A, Bloomston M, Dillhoff M, Rassenti LZ, Kipps TJ, Huebner K, Pichiorri F, Lenze D, Cairo S, Buendia MA, Pineau P, Dejean A, Zanesi N, Rossi S, Calin GA, Liu CG, Palatini J, Negrini M, Vecchione A, Rosenberg A, Croce CM (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599PubMedCrossRefGoogle Scholar
  43. 43.
    Chappell SA, Walsh T, Walker RA, Shaw JA (1997) Loss of heterozygosity at chromosome 6q in preinvasive and early invasive breast carcinomas. Br J Cancer 75(9):1324–1329PubMedCrossRefGoogle Scholar
  44. 44.
    Noviello C, Courjal F, Theillet C (1996) Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res 2(9):1601–1606PubMedGoogle Scholar
  45. 45.
    Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, Gajda MR, Junker K (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29(3):367–373PubMedCrossRefGoogle Scholar
  46. 46.
    Li X, Zhang Y, Ding J, Wu K, Fan D (2010) Survival prediction of gastric cancer by a seven-microRNA signature. Gut 59(5):579–585PubMedCrossRefGoogle Scholar
  47. 47.
    Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, Wan J, Zhou F, Shao K, Sun Y, Wu J, Zhang X, Qiu B, Li N, Shi S, Feng X, Zhao S, Wang Z, Zhao X, Chen Z, Mitchelson K, Cheng J, Guo Y, He J (2011) A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res 17(21):6802–6811PubMedCrossRefGoogle Scholar
  48. 48.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85PubMedCrossRefGoogle Scholar
  49. 49.
    Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29(15):2161–2164PubMedCrossRefGoogle Scholar
  50. 50.
    Ozcan S (2009) MiR-30 family and EMT in human fetal pancreatic islets. Islets 1(3):283–285PubMedCrossRefGoogle Scholar
  51. 51.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784PubMedCrossRefGoogle Scholar
  52. 52.
    Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial–mesenchymal transition by TGF-beta. Future Oncol 5(8):1145–1168PubMedCrossRefGoogle Scholar
  53. 53.
    Rodriguez-Gonzalez FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V, Sleijfer S, Martens JW, Foekens JA (2011) MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 127(1):43–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Chun-Wen Cheng
    • 1
    • 2
    • 3
  • Hsiao-Wei Wang
    • 3
  • Chia-Wei Chang
    • 1
  • Hou-Wei Chu
    • 3
  • Cheng-You Chen
    • 1
  • Jyh-Cherng Yu
    • 4
  • Jui-I Chao
    • 5
  • Huei-Fang Liu
    • 5
  • Shian-ling Ding
    • 6
  • Chen-Yang Shen
    • 3
    • 7
  1. 1.Institute of Biochemistry and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
  2. 2.Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
  3. 3.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
  4. 4.Department of Surgery, Tri-Service General HospitalNational Defense Medical CenterTaipeiTaiwan
  5. 5.Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
  6. 6.Department of NursingKang-Ning Junior College of Medical Care and ManagementTaipeiTaiwan
  7. 7.Graduate Institute of Environmental ScienceChina Medical UniversityTaichungTaiwan

Personalised recommendations