Advertisement

Breast Cancer Research and Treatment

, Volume 133, Issue 3, pp 1025–1035 | Cite as

GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells

  • Adele Vivacqua
  • Enrica Romeo
  • Paola De Marco
  • Ernestina Marianna De Francesco
  • Sergio Abonante
  • Marcello Maggiolini
Preclinical study

Abstract

Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.

Keywords

GPER Egr-1 CTGF Cyclin D1 Tamoxifen resistance Cancer cells 

Notes

Acknowledgments

This study was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, project no. 8925/2009 and Calabria project, 2011), Fondazione Cassa di Risparmio di Calabria e Lucania and Ministero dell’Università e Ricerca Scientifica e Tecnologica (MIUR, Cofin project prot. 2008PK2WCW/2008).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Morgan JI, Curran T (1995) Immediate-early genes: ten years on. Trends Neurosci 18:66–67PubMedCrossRefGoogle Scholar
  2. 2.
    Carbone M, Levis AS (1990) Oncogenes, antioncogenes and the regulation of cell growth. Trends Endocrinol Metab 1:248–253PubMedCrossRefGoogle Scholar
  3. 3.
    Sukhatme VP (1990) Early transcriptional events in cell growth: the Egr family. J Am Soc Nephrol 1:859–866PubMedGoogle Scholar
  4. 4.
    Gashler A, Sukhatme VP (1995) Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50:191–224PubMedCrossRefGoogle Scholar
  5. 5.
    Christy B, Nathans D (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci USA 86:8737–8741PubMedCrossRefGoogle Scholar
  6. 6.
    O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM (1999) The EGR family of transcription regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22:167–173PubMedCrossRefGoogle Scholar
  7. 7.
    Gitenay D, Baron VT (2009) Is EGR1 a potential target for prostate cancer therapy? Futur Oncol 5:993–1003CrossRefGoogle Scholar
  8. 8.
    Shao H, Kono DH, Chen LY, Rubin EM, Kaye J (1997) Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 185:731–744PubMedCrossRefGoogle Scholar
  9. 9.
    Yan SF, Lu J, Zou YS, Soh-Won J, Cohen DM, Buttrick PM, Cooper DR, Steinberg SF, Mackman N, Pinsky DJ, Stern DM (1999) Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem 274:15030–15040PubMedCrossRefGoogle Scholar
  10. 10.
    Mora-Garcia P, Sakamoto KM (2000) Granulocyte colony-stimulating factor induces Egr-1 up-regulation through interaction of serum response element-binding proteins. J Biol Chem 275:22418–22426PubMedCrossRefGoogle Scholar
  11. 11.
    Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J (1998) Growth hormone stimulates phosphorylation and activation of Elk-1 and expression of c-fos, Egr-1, and JunB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 273:31327–31336PubMedCrossRefGoogle Scholar
  12. 12.
    Rolli M, Kotlyarov A, Sakamoto KM, Gaestel M, Neininger A (1999) Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. J Biol Chem 274:19559–19564PubMedCrossRefGoogle Scholar
  13. 13.
    Sukhatme VP, Cao X, Chang LC, Tsai-Morris C-W, Stamenkovich D, Ferreira PCP, Cohen DR, Edwards SA, Shows TB, Curran T, Le Beau MM, Adamson ED (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53:37–43PubMedCrossRefGoogle Scholar
  14. 14.
    Huang RP, Fan Y, de Belle I, Niemeyer C, Gottardis MM, Mercola D, Adamson ED (1997) Decreased Egr-1 expression in human, mouse, and rat mammary cells and tissues correlates with tumor formation. Int J Cancer 72:102–109PubMedCrossRefGoogle Scholar
  15. 15.
    Nair P, Muthukkumar S, Sells SF, Han SS, Sukhatme VP, Rangnekar VM (1997) Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 272:20131–20138PubMedCrossRefGoogle Scholar
  16. 16.
    Cicatiello L, Sica V, Bresciani F, Weisz A (1993) Identification of a specific pattern of “immediate-early” gene activation induced by estrogen during mitogenic stimulation of rat uterine cells. Receptor 3:17–30PubMedGoogle Scholar
  17. 17.
    Naciff JM, Overmann GJ, Torontali SM, Carr GJ, Khambatta ZS, Tiesman JP, Richardson BD, Daston GP (2007) Uterine temporal response to acute exposure to 17α-ethinyl estradiol in the immature rat. Toxicol Sci 97:467–490PubMedCrossRefGoogle Scholar
  18. 18.
    Pratt MAC, Satkunaratnam A, Novosad DM (1998) Estrogen activates raf-1 kinase and induces expression of Egr-1 in MCF-7 breast cancer cells. Mol Cell Biochem 189:119–125PubMedCrossRefGoogle Scholar
  19. 19.
    Chen CC, Lee WR, Safe S (2004) Egr-1 is activated by 17beta-estradiol in MCF-7 cells by mitogen-activated protein kinase-dependent phosphorylation of ELK-1. J Cell Biochem 93:1063–1074PubMedCrossRefGoogle Scholar
  20. 20.
    Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D (2009) Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 28:523–532PubMedCrossRefGoogle Scholar
  21. 21.
    Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Andò S (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279:27008–27016PubMedCrossRefGoogle Scholar
  22. 22.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632PubMedCrossRefGoogle Scholar
  24. 24.
    Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, Musti AM, Picard D, Andò S, Maggiolini M (2006) 17β-Estradiol, genistein and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR30. Mol Pharmacol 70:1414–1423PubMedCrossRefGoogle Scholar
  25. 25.
    Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Ando` S, Maggiolini M (2006) The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 20:631–646PubMedCrossRefGoogle Scholar
  26. 26.
    Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino A, Oprea TI, Prossnitz ER, Musti AM, Ando S, Maggiolini M (2007) G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17β-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–1866PubMedCrossRefGoogle Scholar
  27. 27.
    Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Cappello AR, Dolce V, Abonante S, Pezzi V, Maggiolini M (2008) G-protein-coupled receptor 30 and estrogen receptor-α are involved in the proliferative effects induced by atrazine in ovarian cancer cells. Environ Health Perspect 116:1648–1655PubMedCrossRefGoogle Scholar
  28. 28.
    Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A, Lappano R, Pandey DP, Picard D, Mauro L, Maggiolini M, Maggiolini M (2008) EGF induces GPR30 expression in estrogen receptor negative breast cancer cells. Endocrinology 149:3799–3808PubMedCrossRefGoogle Scholar
  29. 29.
    Vivacqua A, Lappano R, De Marco P, Sisci D, Aquila S, De Amicis F, Fuqua SA, Andò S, Maggiolini M (2009) G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells. Mol Endocrinol 23:1815–1826PubMedCrossRefGoogle Scholar
  30. 30.
    Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen induced activation of Erk-1 and Erk-2 requires the G protein coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660PubMedCrossRefGoogle Scholar
  31. 31.
    Cui L, Zhang Q, Mao Z, Chen J, Wang X, Qu J, Zhang J, Jin D (2011) CTGF is overexpressed in papillary thyroid carcinoma and promotes the growth of papillary thyroid cancer cells. Tumour Biol 32:721–728PubMedCrossRefGoogle Scholar
  32. 32.
    Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447PubMedCrossRefGoogle Scholar
  33. 33.
    Xiao D, Chinnappan D, Pestell R, Albanese C, Weber HC (2005) Bombesin regulates Cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res 65:9934–9942PubMedCrossRefGoogle Scholar
  34. 34.
    Deng YZ, Chen PP, Wang Y, Yin D, Koeffler HP, Li B, Tong XJ, Xie D (2007) Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through beta-catenin-T-cell factor/Lef signaling. J Biol Chem 282:36571–36581PubMedCrossRefGoogle Scholar
  35. 35.
    Liu LY, Han YC, Wu SH, Lv ZH (2008) Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer. World J Gastroenterol 14:2110–2114PubMedCrossRefGoogle Scholar
  36. 36.
    Mullis TC, Tang X, Chong KT (2008) Expression of connective tissue growth factor (CTGF/CCN2) in head and neck squamous cell carcinoma. J Clin Pathol 61:606–610PubMedCrossRefGoogle Scholar
  37. 37.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  38. 38.
    Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–193PubMedCrossRefGoogle Scholar
  39. 39.
    Guillemot L, Levy A, Raymondjean M, Rothhut B (2001) Angiotensin II-induced transcriptional activation of the cyclin D1 gene is mediated by Egr-1 in CHOAT(1A) cells. J Biol Chem 276:39394–39403PubMedCrossRefGoogle Scholar
  40. 40.
    De Sousa LP, Brasil BS, Silva BM, Freitas MH, Nogueira SV, Ferreira PC, Kroon EG, Bonjardim CA (2005) Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochem Biophys Res Commun 329:237–245PubMedCrossRefGoogle Scholar
  41. 41.
    Dupont WD, Page DL (1991) Menopausal estrogen replacement therapy and breast cancer. Arch Intern Med 151:67–72PubMedCrossRefGoogle Scholar
  42. 42.
    Clavel-Chapelon F, Hill C (2000) Hormone replacement therapy in menopause and risk of breast cancer. Presse Med 29:1688–1693PubMedGoogle Scholar
  43. 43.
    Fournier A, Hill C, Clavel-Chapelon F (2003) Hormone replacement therapy in menopause and risk of breast cancer. Bull Cancer 90:821–831PubMedGoogle Scholar
  44. 44.
    Early Breast Cancer Trialist’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-years survival: an overview of the randomized trials. Lancet 365:1687–1700CrossRefGoogle Scholar
  45. 45.
    Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’ Hern R, Sainsbury R, Baum M (2006) Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol 17:818–826PubMedCrossRefGoogle Scholar
  46. 46.
    Herynk MH, Fuqua SA (2007) Estrogen receptors in resistance to hormone therapy. Adv Exp Med Biol 608:130–143PubMedCrossRefGoogle Scholar
  47. 47.
    Linke SP, Bremer TM, Herold CD, Sauter G, Diamond C (2006) A multimarker model to predict outcome in tamoxifen-treated breast cancer patients. Clin Cancer Res 12:1175–1183PubMedCrossRefGoogle Scholar
  48. 48.
    Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T (2010) Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87–96PubMedCrossRefGoogle Scholar
  49. 49.
    Filardo EJ, Graeber CT, Quinn JA, Resnick MB, Giri D, DeLellis RA, Steinhoff MM, Sabo E (2006) Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res 12:6359–6366PubMedCrossRefGoogle Scholar
  50. 50.
    Smith HO, Leslie KK, Singh M, Qualls CR, Revankar CM, Joste NE, Prossnitz ER (2007) GPR30: a novel indicator of poor survival for endometrial carcinoma. Am J Obstet Gynecol 196:386 e381–389PubMedGoogle Scholar
  51. 51.
    Madeo A, Maggiolini M (2010) Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 70:6036–6046PubMedCrossRefGoogle Scholar
  52. 52.
    Morelli C, Garofalo C, Sisci D, del Rincon S, Cascio S, Tu X, Vecchione A, Sauter ER, Miller WH Jr, Surmacz E (2004) Nuclear insulin receptor substrate 1 interacts with estrogen receptor α at ERE promoters. Oncogene 23:7517–7526PubMedCrossRefGoogle Scholar
  53. 53.
    Musgrove EA (2006) Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 24:13–19PubMedCrossRefGoogle Scholar
  54. 54.
    Chu CY, Chang CC, Prakash E, Kuo ML (2008) Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15:675–685PubMedCrossRefGoogle Scholar
  55. 55.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  56. 56.
    Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117:3155–3163PubMedCrossRefGoogle Scholar
  57. 57.
    Filardo EJ, Quinn JA, Sabo E (2008) Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor. Steroids 73:870–873PubMedCrossRefGoogle Scholar
  58. 58.
    Prossnitz ER, Maggiolini M (2009) Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 308:32–38PubMedCrossRefGoogle Scholar
  59. 59.
    Maggiolini M, Picard D (2010) The unfolding stories of GPR30, a new membrane bound estrogen receptor. J Endocrinol 204:105–114PubMedCrossRefGoogle Scholar
  60. 60.
    Scott JA, McGuire WL (1991) New molecular markers of prognosis in breast cancer. Raven Press, New YorkGoogle Scholar
  61. 61.
    Ponzone R, Biglia N, Jacomuzzi ME, Mariani L, Dominguez A, Sismondi P (2006) Antihormones in prevention and treatment of breast cancer. Ann N Y Acad Sci 1089:143–158PubMedCrossRefGoogle Scholar
  62. 62.
    Howell A, DeFriend D, Robertson J, Blamey R, Walton P (1995) Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 345:29–30PubMedCrossRefGoogle Scholar
  63. 63.
    Ishii Y, Waxman S, Germain D (2008) Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res 68:852–860PubMedCrossRefGoogle Scholar
  64. 64.
    Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68:826–833PubMedCrossRefGoogle Scholar
  65. 65.
    Herynk MH, Fuqua SAW (2004) Estrogen receptor mutations in human disease. Endocr Rev 25:869–898PubMedCrossRefGoogle Scholar
  66. 66.
    Giordano C, Cui Y, Barone I, Andò S, Mancini MA, Berno V, Fuqua SA (2009) Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat 119:71–85PubMedCrossRefGoogle Scholar
  67. 67.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Adele Vivacqua
    • 1
  • Enrica Romeo
    • 1
  • Paola De Marco
    • 1
  • Ernestina Marianna De Francesco
    • 1
  • Sergio Abonante
    • 2
  • Marcello Maggiolini
    • 1
  1. 1.Department of Pharmaco-BiologyUniversity of CalabriaRendeItaly
  2. 2.Regional HospitalCosenzaItaly

Personalised recommendations