Advertisement

Breast Cancer Research and Treatment

, Volume 131, Issue 3, pp 899–906 | Cite as

A phase I/II prospective, single arm trial of gefitinib, trastuzumab, and docetaxel in patients with stage IV HER-2 positive metastatic breast cancer

  • G. Somlo
  • C. L. Martel
  • S. K. Lau
  • P. Frankel
  • C. Ruel
  • L. Gu
  • A. Hurria
  • C. Chung
  • T. Luu
  • R. MorganJr
  • L. Leong
  • M. Koczywas
  • M. McNamara
  • C. A. Russell
  • S. E. Kane
Clinical trial

Abstract

Inhibition of the HER-2 pathway via the monoclonal antibody trastuzumab has had a major impact in treatment of HER-2 positive breast cancer, but de novo or acquired resistance may reduce its effectiveness. The known interplay between the epidermal growth factor receptor (EGFR) and HER-2 receptors and pathways creates a rationale for combined anti-EGFR and anti-HER-2 therapy in HER-2 positive metastatic breast cancer (MBC), and toxicities associated with the use of multiple chemotherapeutic agents together with biological therapies may also be reduced. We conducted a prospective, single arm, phase I/II trial to determine the efficacy and toxicity of the combination of trastuzumab with the EGFR inhibitor gefitinib and docetaxel, in patients with HER-2 positive MBC. The maximum tolerated dose (MTD) was determined in the phase I portion. The primary end point of the phase II portion was progression-free survival (PFS). Immunohistochemical analysis of biomarker expression of the PKA-related proteins cAMP response element-binding protein (CREB), phospho-CREB and DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) plus t-DARPP (the truncated isoform of DARPP-32); PTEN; p-p70 S6K; and EGFR was conducted on tissue from metastatic sites. Nine patients were treated in the phase I portion of the study and 22 in the phase II portion. The MTD was gefitinib 250 mg on days 2–14, trastuzumab 6 mg/kg, and docetaxel 60 mg/m2 every 21 days. For the 29 patients treated at the MTD, median PFS was 12.7 months, with complete and partial response rates of 18 and 46%, and a stable disease rate of 29%. No statistically significant correlation was found between response and expression of any biomarkers. We conclude that the combination of gefitinib, trastuzumab, and docetaxel is feasible and effective. Expression of the biomarkers examined did not predict outcome in this sample of HER-2 overexpressing metastatic breast cancer.

Keywords

Breast cancer HER2 Gefitinib Phosphatase and tensin homolog Protein kinase A Trastuzumab 

Notes

Acknowledgments

We wish to thank Kim Robinson for her assistance with data management and Carol Wuenschell, Ph.D., for her editorial assistance. We also thank Sofia Loera and members of the City of Hope Anatomic Pathology Core lab for their help with histology work. This work was supported by the National Cancer Institute at the National Institutes of Health through a National Cancer Institute Comprehensive Cancer Center Grant [CA 33572]; and by AstraZeneca. This study was presented in part at the 2005 San Antonio Breast Cancer Symposium.

References

  1. 1.
    Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69PubMedCrossRefGoogle Scholar
  2. 2.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedCrossRefGoogle Scholar
  3. 3.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. doi: 10.1056/NEJM200103153441101 PubMedCrossRefGoogle Scholar
  4. 4.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684. doi: 10.1056/NEJMoa052122 PubMedCrossRefGoogle Scholar
  5. 5.
    Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M, Goldhirsch A, Untch M, Mariani G, Baselga J, Kaufmann M, Cameron D, Bell R, Bergh J, Coleman R, Wardley A, Harbeck N, Lopez RI, Mallmann P, Gelmon K, Wilcken N, Wist E, Sanchez Rovira P, Piccart-Gebhart MJ (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36. doi: 10.1016/S0140-6736(07)60028-2 PubMedCrossRefGoogle Scholar
  6. 6.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726PubMedCrossRefGoogle Scholar
  7. 7.
    Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93(24):1852–1857PubMedCrossRefGoogle Scholar
  8. 8.
    Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13(16):4909–4919. doi: 10.1158/1078-0432.CCR-07-0701 PubMedCrossRefGoogle Scholar
  9. 9.
    Chan CT, Metz MZ, Kane SE (2005) Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3 K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 91(2):187–201. doi: 10.1007/s10549-004-7715-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083. doi: 10.1200/JCO.2009.25.3641 PubMedCrossRefGoogle Scholar
  11. 11.
    Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck SG, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne CK, Chang JC (2011) Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol 29(2):166–173. doi: 10.1200/JCO.2009.27.7814 PubMedCrossRefGoogle Scholar
  12. 12.
    Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280. doi: 10.1038/ncponc0509 PubMedCrossRefGoogle Scholar
  13. 13.
    Miller TW, Forbes JT, Shah C, Wyatt SK, Manning HC, Olivares MG, Sanchez V, Dugger TC, de Matos Granja N, Narasanna A, Cook RS, Kennedy JP, Lindsley CW, Arteaga CL (2009) Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res 15(23):7266–7276. doi: 10.1158/1078-0432.CCR-09-1665 PubMedCrossRefGoogle Scholar
  14. 14.
    Gu L, Lau SK, Loera S, Somlo G, Kane SE (2009) Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. Clin Cancer Res 15(23):7196–7206. doi: 10.1158/1078-0432.CCR-09-0585 PubMedCrossRefGoogle Scholar
  15. 15.
    Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M, Ellis C, Casey M, Vukelja S, Bischoff J, Baselga J, O’Shaughnessy J (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 28(7):1124–1130. doi: 10.1200/JCO.2008.21.4437 PubMedCrossRefGoogle Scholar
  16. 16.
    Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21(12):2237–2246. doi: 10.1200/JCO.2003.10.038 PubMedCrossRefGoogle Scholar
  17. 17.
    Albain K, Elledge R, Gradishar WJ, Hayes DF, Rowinsky E, Hudis C, Pusztai L, Tripathy D, Modi S, Rubi S (2002) 20: Open-label, phase II, multicenter trial of ZD1839 (‘Iressa’) in patients with advanced breast cancer. Breast Cancer Res Treat 76 (Suppl. 1). doi: 10.1023/A:1021560101414
  18. 18.
    Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, Guillem V, Gonzalez S, Sauleda S, Marimon I, Tabernero JM, Koehler MT, Rojo F (2005) Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 23(23):5323–5333. doi: 10.1200/JCO.2005.08.326 PubMedCrossRefGoogle Scholar
  19. 19.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A, Kennedy J, O’Byrne K, Conte P, Green M, Ward C, Mayne K, Extra JM (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23(19):4265–4274. doi: 10.1200/JCO.2005.04.173 PubMedCrossRefGoogle Scholar
  20. 20.
    Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J Clin Oncol 22(5):785–794. doi: 10.1200/JCO.2004.07.215 PubMedCrossRefGoogle Scholar
  21. 21.
    Robert N, Leyland-Jones B, Asmar L, Belt R, Ilegbodu D, Loesch D, Raju R, Valentine E, Sayre R, Cobleigh M, Albain K, McCullough C, Fuchs L, Slamon D (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24(18):2786–2792. doi: 10.1200/JCO.2005.04.1764 PubMedCrossRefGoogle Scholar
  22. 22.
    Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481CrossRefGoogle Scholar
  23. 23.
    Sun J (2001) Variance estimation of a survival function for interval-censored survival data. Stat Med 20(8):1249–1257. doi: 10.1002/sim.719 PubMedCrossRefGoogle Scholar
  24. 24.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi: 10.1007/s10549-006-9242-8 PubMedCrossRefGoogle Scholar
  25. 25.
    Rimawi MF, Shetty PB, Weiss HL, Schiff R, Osborne CK, Chamness GC, Elledge RM (2010) Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 116(5):1234–1242. doi: 10.1002/cncr.24816 PubMedCrossRefGoogle Scholar
  26. 26.
    Somlo G, Chu P, Frankel P, Ye W, Groshen S, Doroshow JH, Danenberg K, Danenberg P (2008) Molecular profiling including epidermal growth factor receptor and p21 expression in high-risk breast cancer patients as indicators of outcome. Ann Oncol 19(11):1853–1859. doi: 10.1093/annonc/mdn402 PubMedCrossRefGoogle Scholar
  27. 27.
    Arteaga CL, O’Neill A, Moulder SL, Pins M, Sparano JA, Sledge GW, Davidson NE (2008) A phase I–II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB2)-overexpressing metastatic breast cancer. Clin Cancer Res 14(19):6277–6283. doi: 10.1158/1078-0432.CCR-08-0482 PubMedCrossRefGoogle Scholar
  28. 28.
    Forbes JF, Pienkowski T, Valero V, Eiermann W, Von Minckwitz G, Martin M, Smylie M, Crown JM, Noel N, Pegram M, On behalf of the BCIRG007 investigators (2006) BCIRG 007: Randomized phase III trial of trastuzumab plus docetaxel with or without carboplatin first line in HER2 positive metastatic breast cancer (MBC). J Clin Oncol 24 (18S pt.II):LBA516Google Scholar
  29. 29.
    Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177(4):1647–1656. doi: 10.2353/ajpath.2010.090885 PubMedCrossRefGoogle Scholar
  30. 30.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345. doi: 10.1056/NEJMoa033025 PubMedCrossRefGoogle Scholar
  31. 31.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22(7):1201–1208. doi: 10.1200/JCO.2004.10.182 PubMedCrossRefGoogle Scholar
  32. 32.
    Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23(9):1803–1810. doi: 10.1200/JCO.2005.08.037 PubMedCrossRefGoogle Scholar
  33. 33.
    Hirsch FR, Varella-Garcia M, Dziadziuszko R, Xiao Y, Gajapathy S, Skokan M, Lin M, O’Neill V, Bunn PA Jr (2008) Fluorescence in situ hybridization subgroup analysis of TRIBUTE, a phase III trial of erlotinib plus carboplatin and paclitaxel in non-small cell lung cancer. Clin Cancer Res 14(19):6317–6323. doi: 10.1158/1078-0432.CCR-08-0539 PubMedCrossRefGoogle Scholar
  34. 34.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957. doi: 10.1056/NEJMoa0810699 PubMedCrossRefGoogle Scholar
  35. 35.
    Pinter F, Papay J, Almasi A, Sapi Z, Szabo E, Kanya M, Tamasi A, Jori B, Varkondi E, Moldvay J, Szondy K, Keri G, Dominici M, Conte P, Eckhardt S, Kopper L, Schwab R, Petak I (2008) Epidermal growth factor receptor (EGFR) high gene copy number and activating mutations in lung adenocarcinomas are not consistently accompanied by positivity for EGFR protein by standard immunohistochemistry. J Mol Diagn 10(2):160–168. doi: 10.2353/jmoldx.2008.070125 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • G. Somlo
    • 1
  • C. L. Martel
    • 1
  • S. K. Lau
    • 2
  • P. Frankel
    • 3
  • C. Ruel
    • 3
  • L. Gu
    • 4
  • A. Hurria
    • 1
  • C. Chung
    • 1
  • T. Luu
    • 1
  • R. MorganJr
    • 1
  • L. Leong
    • 1
  • M. Koczywas
    • 1
  • M. McNamara
    • 1
  • C. A. Russell
    • 5
  • S. E. Kane
    • 4
  1. 1.Department of Medical Oncology and Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteUSA
  2. 2.Anatomic PathologyCity of Hope Comprehensive Cancer CenterDuarteUSA
  3. 3.Division of BiostatisticsCity of Hope Comprehensive Cancer CenterDuarteUSA
  4. 4.Division of Tumor Cell BiologyCity of Hope Comprehensive Cancer CenterDuarteUSA
  5. 5.Division of Medical Oncology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations