Advertisement

Breast Cancer Research and Treatment

, Volume 128, Issue 3, pp 891–898 | Cite as

Identification and characterization of novel potentially oncogenic mutations in the human BAF57 gene in a breast cancer patient

  • M. Ángeles Villaronga
  • Irene López-Mateo
  • Linn Markert
  • Enrique Espinosa
  • Juan Ángel Fresno Vara
  • Borja Belandia
Brief Report

Abstract

BAF57 is a core subunit present in all mammalian SWI/SNF ATP-dependent chromatin remodeling complexes, which regulates important biological processes including gene transcription, DNA recombination, DNA repair, and DNA replication. Among other functions, BAF57 mediates the recruitment of SWI/SNF to sequence-specific transcription factors. Thus, BAF57 plays a crucial role in regulating estrogen-dependent gene expression and proliferation in human cell lines derived from breast tumors. Increasing genetic and biochemical evidences suggest that mutations in BAF57 or alterations in its expression could play an oncogenic role in the mammary gland. Here, we describe two novel mutations in the BAF57 gene found in a breast cancer patient. Both mutations originate premature stop codons, leading to truncated proteins, structurally similar to another BAF57 mutant previously found in a human cell line derived from a breast tumor (BT-549). The expression of these novel BAF57 mutants has abnormally high estrogen receptor alpha (ERα) coactivating potential, suggesting that they might be involved in the aberrant estrogen-dependent proliferation that occur in the majority of breast tumors that retain ERα expression. In addition, the mutations in BAF57 affect its functional interaction with the androgen receptor and ETS2, two transcription factors that play an important role in breast cell biology. Therefore, mutations in BAF57 could impinge on several oncogenic signaling pathways contributing to the origin and/or development of breast cancer.

Keywords

BAF57 Breast cancer Chromatin remodeling Estrogen receptor SWI/SNF 

Notes

Acknowledgments

This study was supported by the Ministerio de Ciencia e Innovación (SAF2007-62642 and SAF2010-21013), Instituto de Salud Carlos III (FIS CP05/00248) and the Fundación de Investigación Médica Mutua Madrileña. We thank Ana Aranda for her continuous support.

Supplementary material

10549_2011_1492_MOESM1_ESM.pdf (267 kb)
Supplementary material 1 (PDF 266 kb)

References

  1. 1.
    Wang W, Chi T, Xue Y, Zhou S, Kuo A, Crabtree GR (1998) Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc Natl Acad Sci USA 95(2):492–498PubMedCrossRefGoogle Scholar
  2. 2.
    Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3(6):422–429. doi: 10.1038/nrm828 PubMedCrossRefGoogle Scholar
  3. 3.
    Weissman B, Knudsen KE (2009) Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 69(21):8223–8230. doi: 10.1158/0008-5472.CAN-09-2166 PubMedCrossRefGoogle Scholar
  4. 4.
    Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21(15):4094–4103PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia-Pedrero JM, Kiskinis E, Parker MG, Belandia B (2006) The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J Biol Chem 281(32):22656–22664PubMedCrossRefGoogle Scholar
  6. 6.
    Link KA, Burd CJ, Williams E, Marshall T, Rosson G, Henry E, Weissman B, Knudsen KE (2005) BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 25(6):2200–2215PubMedCrossRefGoogle Scholar
  7. 7.
    Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676PubMedCrossRefGoogle Scholar
  8. 8.
    Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266(5182):120–122PubMedCrossRefGoogle Scholar
  9. 9.
    Kiskinis E, Garcia-Pedrero JM, Villaronga MA, Parker MG, Belandia B (2006) Identification of BAF57 mutations in human breast cancer cell lines. Breast Cancer Res Treat 98(2):191–198PubMedCrossRefGoogle Scholar
  10. 10.
    Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25(4):1425–1436PubMedCrossRefGoogle Scholar
  11. 11.
    Higgins MJ, Wolff AC (2010) The androgen receptor in breast cancer: learning from the past. Breast Cancer Res Treat 124(3):619–621. doi: 10.1007/s10549-010-0864-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Somboonporn W, Davis SR (2004) Testosterone effects on the breast: implications for testosterone therapy for women. Endocr Rev 25(3):374–388. doi: 10.1210/er.2003-0016 PubMedCrossRefGoogle Scholar
  13. 13.
    Baker KM, Wei G, Schaffner AE, Ostrowski MC (2003) Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. J Biol Chem 278(20):17876–17884. doi: 10.1074/jbc.M209480200 PubMedCrossRefGoogle Scholar
  14. 14.
    Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, Thompson JC, Caserta E, Wang H, Chong JL, Naidu S, Wei G, Sharma SM, Stephens JA, Fernandez SA, Gurcan MN, Weinstein MB, Barsky SH, Yee L, Rosol TJ, Stromberg PC, Robinson ML, Pepin F, Hallett M, Park M, Ostrowski MC, Leone G (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267):1084–1091. doi: 10.1038/nature08486 PubMedCrossRefGoogle Scholar
  15. 15.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics CA. Cancer J Clin 60(5):277–300. doi: 10.3322/caac.20073 CrossRefGoogle Scholar
  16. 16.
    Hartman J, Strom A, Gustafsson JA (2009) Estrogen receptor beta in breast cancer—diagnostic and therapeutic implications. Steroids 74(8):635–641. doi: 10.1016/j.steroids.2009.02.005 PubMedCrossRefGoogle Scholar
  17. 17.
    Castellano I, Allia E, Accortanzo V, Vandone AM, Chiusa L, Arisio R, Durando A, Donadio M, Bussolati G, Coates AS, Viale G, Sapino A (2010) Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat 124(3):607–617. doi: 10.1007/s10549-010-0761-y PubMedCrossRefGoogle Scholar
  18. 18.
    Turner DP, Findlay VJ, Moussa O, Watson DK (2007) Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem 102(3):549–559. doi: 10.1002/jcb.21494 PubMedCrossRefGoogle Scholar
  19. 19.
    Redmond AM, Bane FT, Stafford AT, McIlroy M, Dillon MF, Crotty TB, Hill AD, Young LS (2009) Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin Cancer Res 15(6):2098–2106. doi: 10.1158/1078-0432.CCR-08-1649 PubMedCrossRefGoogle Scholar
  20. 20.
    Chen J, Archer TK (2005) Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25(20):9016–9027. doi: 10.1128/MCB.25.20.9016-9027.2005 PubMedCrossRefGoogle Scholar
  21. 21.
    Hah N, Kolkman A, Ruhl DD, Pijnappel WW, Heck AJ, Timmers HT, Kraus WL (2010) A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Res 70(11):4402–4411. doi: 10.1158/0008-5472.CAN-09-2767 PubMedCrossRefGoogle Scholar
  22. 22.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi: 10.1038/nm1764 PubMedCrossRefGoogle Scholar
  23. 23.
    Davis LM, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, Bocklage T, Doeden K, Hall B, Alsobrook J, Rabinowitz I, Williams TM, Hozier J (2007) Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn 9(3):327–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • M. Ángeles Villaronga
    • 1
  • Irene López-Mateo
    • 1
  • Linn Markert
    • 1
  • Enrique Espinosa
    • 2
  • Juan Ángel Fresno Vara
    • 3
  • Borja Belandia
    • 1
  1. 1.Department of Cancer BiologyInstituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain
  2. 2.Service of Oncology, IdiPAZHospital Universitario La PazMadridSpain
  3. 3.Laboratory of Molecular Pathology & Oncology, IdiPAZHospital Universitario La PazMadridSpain

Personalised recommendations