Struggling with subtypes: trying to bridge the gap between molecular breast cancer subtypes and clinical management

  • Nadia Harbeck
Invited commentary

Modern understanding of breast cancer as a disease has undisputedly left the “Halstedian” worldview and has entered the molecular age. Formerly, breast cancer heterogeneity was defined simply by measurable differences such as nodal involvement or tumor size and subsequently by steroid hormone receptor positivity. Yet, the groundbreaking discoveries of Perou et al. [1] have taught us that there are distinct molecular subtypes of breast cancer that even carry clinical relevance with regard to patient outcome [2]. The fact that these subtypes and their clinical impact on breast cancer outcome can be consistently identified across data sets strongly suggests that they are indeed indicative of distinct intrinsic biological properties and behavior [3].

By far the most frequent molecular subtypes are luminal tumors, encompassing about two-thirds of all breast cancers. For luminal tumors as a whole, the molecular characterization seems to be rather concordant with the immunohistochemical...


Breast Cancer Luminal Early Breast Cancer Molecular Subtype Recurrence Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  2. 2.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423 Epub 2003 Jun 26PubMedCrossRefGoogle Scholar
  4. 4.
    de Ronde JJ, Hannemann J, Halfwerk H, Mulder L, Straver ME, Vrancken Peeters MJ, Wesseling J, van de Vijver M, Wessels LF, Rodenhuis S (2010) Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat 119(1):119–126PubMedCrossRefGoogle Scholar
  5. 5.
    Sørlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Børresen-Dale AL (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127PubMedCrossRefGoogle Scholar
  6. 6.
    Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J, Foekens JA, Klijn JG, Larsimont D, Buyse M, Bontempi G, Delorenzi M, Piccart MJ, Sotiriou C (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246 (Erratum in: J Clin Oncol 25(24):3790)PubMedCrossRefGoogle Scholar
  7. 7.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750PubMedCrossRefGoogle Scholar
  8. 8.
    Karn T, Ruckhäberle E, Hanker L, Müller V, Schmidt M, Solbach C, Gätje R, Gehrmann M, Holtrich U, Kaufmann M, Rody A (2011) Gene expression profiling of luminal B breast cancers reveals NHERF1 as a new marker of endocrine resistance. Breast Cancer Res Treat. doi: 10.1007/s10549-010-1333-x
  9. 9.
    Bellizzi A, Malfettone A, Cardone RA, Mangia A (2010) NHERF1/EBP50 in breast cancer: clinical perspectives. Breast Care (Basel) 5(2):86–90CrossRefGoogle Scholar
  10. 10.
    Mangia A, Chiriatti A, Bellizzi A, Malfettone A, Stea B, Zito FA, Reshkin SJ, Simone G, Paradiso A (2009) Biological role of NHERF1 protein expression in breast cancer. Histopathology 55(5):600–608PubMedCrossRefGoogle Scholar
  11. 11.
    Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, Davies SR, Snider J, Stijleman IJ, Reed J, Cheang MC, Mardis ER, Perou CM, Bernard PS, Ellis MJ (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16(21):5222–5232PubMedCrossRefGoogle Scholar
  12. 12.
    Jänicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M, Sweep CG, Selbmann HK, Graeff H, Schmitt M, for the German Chemo N0 Study Group (2001) Randomized adjuvant therapy trial in high-risk lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type I. J Natl Cancer Inst 93(12):913–920PubMedCrossRefGoogle Scholar
  13. 13.
    Harbeck N, Kates RE, Schmitt M, Gauger K, Kiechle M, Jänicke F, Thomssen C, Look MP, Foekens JA (2004) Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin Breast Cancer 5(5):348–352PubMedCrossRefGoogle Scholar
  14. 14.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  15. 15.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536PubMedCrossRefGoogle Scholar
  16. 16.
    Weinman EJ, Hall RA, Friedman PA, Liu-Chen LY, Shenolikar S (2006) The association of NHERF adaptor proteins with g protein-coupled receptors and receptor tyrosine kinases. Annu Rev Physiol 68:491–505 ReviewPubMedCrossRefGoogle Scholar
  17. 17.
    Cummings MC, Chambers R, Simpson PT, Lakhani SR (2011) Molecular classification of breast cancer: is it time to pack up our microscopes? Pathology 43(1):1–8PubMedCrossRefGoogle Scholar
  18. 18.
    Fan C, Prat A, Parker JS, Liu Y, Carey LA, Troester MA, Perou CM (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genomics 4:3PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Breast CenterUniversity of CologneCologneGermany

Personalised recommendations