Advertisement

Breast Cancer Research and Treatment

, Volume 128, Issue 3, pp 845–853 | Cite as

Genomic rearrangements of the BRCA1 gene in Chilean breast cancer families: an MLPA analysis

  • Alejandro Sanchez
  • Paola Faundez
  • Pilar Carvallo
Epidemiology

Abstract

Point mutations and small deletions and insertions in BRCA1 and BRCA2 genes are responsible of about 20% of hereditary breast cancer cases in Chilean population. Studies in other populations have identified the amplification and/or deletion of one or more exons in these genes as the cause of the disease. In this study the authors determined the presence of these types of alterations in BRCA1 and BRCA2, in 74 Chilean families with breast/ovarian cancer that were negative for germline mutations in these genes. Since these alterations are not detectable using the conventional PCR-based methods, the authors use MLPA (multiplex ligation-dependent probe amplification) to detect amplifications and/or deletions in BRCA1 and BRCA2 genes. The authors identified two different alterations in BRCA1: exon 10 duplication in one family and amplification of exons 3, 5, and 6 in two families. Duplication of exon 10 contains intronic adjacent sequences suggesting gene duplication. The second rearrangement consist of a 4 times amplification of a fragment containing exons 3, 5, and 6 joined together with no introns, suggesting the presence of a processed pseudogene. No alterations were detected in BRCA2. In order to validate the MLPA results and characterize the genomic alterations the authors performed qPCR, long range PCR, and sequencing.

Keywords

Hereditary breast cancer BRCA1 BRCA2 Genomic rearrangements MLPA 

Notes

Acknowledgments

The authors are grateful of all family members who contributed to this study. Grant Sponsor: Fondecyt 1080595.

References

  1. 1.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The breast cancer linkage consortium. Am J Hum Genet 62:676–689PubMedCrossRefGoogle Scholar
  2. 2.
    Díez O, Osorio A, Durán M, Martinez-Ferrandis JI, de la Hoya M, Salazar R, Vega A, Campos B, Rodríguez-López R, Velasco E, Chaves J, Díaz-Rubio E, Jesús Cruz J, Torres M, Esteban E, Cervantes A, Alonso C, San Román JM, González-Sarmiento R, Miner C, Carracedo A, Eugenia Armengod M, Caldés T, Benítez J, Baiget M (2003) Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer patients: a high proportion of mutations unique to Spain and evidence of founder effects. Hum Mutat 22:301–312PubMedCrossRefGoogle Scholar
  3. 3.
    Tereschenko IV, Basham VM, Ponder BA, Pharoah PD (2002) BRCA1 and BRCA2 mutations in Russian familial breast cancer. Human Mutat 192:184CrossRefGoogle Scholar
  4. 4.
    Thorlacius S, Sigurdsson S, Bjarnadottir H, Olafsdottir G, Jonasson JG, Tryggvadottir L et al (1997) Study of a single BRCA2 mutation with high carrier frequency in a small population. Am J Hum Genet 60:1079–1084PubMedGoogle Scholar
  5. 5.
    Gallardo M, Silva A, Rubio L, Alvarez C, Torrealba C, Salinas M, Tapia T, Faundez P, Palma L, Riccio ME, Paredes H, Rodriguez M, Cruz A, Rousseau C, King MC, Camus M, Alvarez M, Carvallo P (2006) Incidence of BRCA1 and BRCA2 mutations in 54 Chilean families with breast/ovarian cancer, genotype–phenotype correlations. Breast Cancer Res Treat 95:81–87PubMedCrossRefGoogle Scholar
  6. 6.
    Jara L, Ampuero S, Santibáñez E, Seccia L, Rodríguez J, Bustamante M, Martínez V, Catenaccio A, Lay-Son G, Blanco R, Reyes JM (2006) BRCA1 and BRCA2 mutations in a South American population. Cancer Genet Cytogenet 166(1):36–45PubMedCrossRefGoogle Scholar
  7. 7.
    Swensen J, Hoffman M, Skolnick MH, Neuhausen SL (1997) Identification of a 14 kb deletion involving the promoter region of BRCA1 in a breast cancer family. Hum Mol Genet 6:1513–1517PubMedCrossRefGoogle Scholar
  8. 8.
    Payne SR, Newman B, King MC (2000) Complex germline rearrangement of BRCA1 associated with breast and ovarian cancer. Genes Chromosom Cancer Sep 29:58–62CrossRefGoogle Scholar
  9. 9.
    Gutiérrez-Enríquez S, de la Hoya M, Martínez-Bouzas C, Sanchez de Abajo A, Ramón y Cajal T, Llort G, Blanco I, Beristain E, Díaz-Rubio E, Alonso C, Tejada MI, Caldés T, Diez O (2007) Screening for large rearrangements of the BRCA2 gene in Spanish families with breast/ovarian cancer. Breast Cancer Res Treat 103:103–107PubMedCrossRefGoogle Scholar
  10. 10.
    The human gene mutation database (2009). http://www.hgmd.org
  11. 11.
    Sluiter MD, van Rensburg EJ (2010) Large genomic rearrangements of the BRCA1 and BRCA2 genes: review of the literature and report of a novel BRCA1 mutation. Breast Cancer Res Treat 125:325–349PubMedCrossRefGoogle Scholar
  12. 12.
    Hogervorst FB, Nederlof PM, Gille JJ et al (2003) Large genomics deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res 63:1449–1453PubMedGoogle Scholar
  13. 13.
    Moisan AM, Fortin J, Dumont M, Samson C, Bessette P, Chiquette J, Laframboise R, Lépine J, Lespérance B, Pichette R, Plante M, Provencher L, Voyer P, Goldgar D, Bridge P, Simard J (2006) No evidence of BRCA1/2 genomic rearrangements in high-risk French-Canadian breast/ovarian cancer families. Genet Test 10:104–115PubMedCrossRefGoogle Scholar
  14. 14.
    Pietschmann A, Mehdipour P, Mehdipour P, Atri M, Hofmann W, Hosseini-Asl SS, Scherneck S, Mundlos S, Peters H (2005) Mutation analysis of BRCA1 and BRCA2 genes in Iranian high risk breast cancer families. J Cancer Res Clin Oncol 131(8):552–558PubMedCrossRefGoogle Scholar
  15. 15.
    Smith TM, Lee MK, Szabo CI, Jerome N, McEuen M, Taylor M, Hood L, King MC (1996) Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res 6:1029–1049PubMedCrossRefGoogle Scholar
  16. 16.
    Brown MA, Xu CF, Nicolai H, Griffiths B, Chambers JA, Black D, Solomon E (1996) The 5′ end of the BRCA1 gene lies within a duplicated region of human chromosome 17q21. Oncogene 12:2507–2513PubMedGoogle Scholar
  17. 17.
    Puget N, Torchard D, Serova-Sinilnikova OM, Lynch HT, Feunteun J, Lenoir GM, Mazoyer S (1997) A 1-kb Alu-mediated germ-line deletion removing BRCA1 exon 17. Cancer Res 57:828–831PubMedGoogle Scholar
  18. 18.
    Puget N, Gad S, Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S (2002) Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggests the existence of a recombination hot spot. Am J Hum Genet 70:858–865PubMedCrossRefGoogle Scholar
  19. 19.
    Armour JAL, Barton DE, Cockburn DJ, Taylor GR (2002) The detection of large deletions or duplications in genomic DNA. Human Mutat 20:325–337CrossRefGoogle Scholar
  20. 20.
    Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57PubMedCrossRefGoogle Scholar
  21. 21.
    Lahiri DK, Nurnberger J (1991) A rapid non-enzymatic method for the preparation of the HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444PubMedCrossRefGoogle Scholar
  22. 22.
    de la Hoya M, Pérez-Segura P, Van Orsouw N, Díaz-Rubio E, Caldés T (2001) Spanish family study on hereditary breast and/or ovarian cancer: analysis of the BRCA1 gene. Int J Cancer 91(1):137–140PubMedCrossRefGoogle Scholar
  23. 23.
    Tournier I, Paillerets BB, Sobol H et al (2004) Significant contribution of germline BRCA2 rearrangements in male breast cancer families. Cancer Res 64:8143–8147PubMedCrossRefGoogle Scholar
  24. 24.
    Puget N, Sinilnikova OM, Stoppa-Lyonnet D, Audoynaud C, Pagès S, Lynch HT, Goldgar D, Lenoir GM, Mazoyer S (1999) An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am J Hum Genet 64:300–302PubMedCrossRefGoogle Scholar
  25. 25.
    Gad S, Aurias A, Puget N, Mairal A, Schurra C, Montagna M, Pages S, Caux V, Mazoyer S, Bensimon A, Stoppa-Lyonnet D (2001) Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements. Gene Chromosom Cancer 31:75–84CrossRefGoogle Scholar
  26. 26.
    Agata S, Viel A, Della Puppa L, Cortesi L, Fersini G, Callegaro M, Dalla Palma M, Dolcetti R, Federico M, Venuta S, Miolo G, D’Andrea E, Montagna M (2006) Prevalence of BRCA1 genomic rearrangements in a large cohort of Italian breast and breast/ovarian cancer families without detectable BRCA1 and BRCA2 point mutations. Genes Chromosomes Cancer 45:791–797PubMedCrossRefGoogle Scholar
  27. 27.
    Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S, Foretova L, Soucek P, King MC (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388PubMedCrossRefGoogle Scholar
  28. 28.
    Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, Rohaizak M, Fuad I, Jamal AR A, Zarina AL, Nor Aina E, Normayah K, Nor Hisham A (2010) Identification of novel large genomic rearrangements at the BRCA1 locus in Malaysian women with breast cancer. Cancer Epidemiol 34:442–447PubMedCrossRefGoogle Scholar
  29. 29.
    Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Ann Rev Genet 19:253–272PubMedCrossRefGoogle Scholar
  30. 30.
    Wilde CD, Crowther CE, Cripe TP, Gwo-Shu Lee M, Cowan NJ (1982) Evidence that a human beta-tubulin pseudogene is derived from its corresponding mRNA. Nature 297(5861):83–84PubMedCrossRefGoogle Scholar
  31. 31.
    Moos M, Gallwitz D (1982) Structure of a human beta-actin-related pseudogene which lacks intervening sequences. Nucleic Acids Res 10(23):7843–7849PubMedCrossRefGoogle Scholar
  32. 32.
    Chen MJ, Shimada T, Moulton AD, Harrison M, Nienhuis AW (1982) Intronless human dihydrofolate reductase genes are derived from processed RNA molecules. Proc Natl Acad Sci USA 79(23):7435–7439PubMedCrossRefGoogle Scholar
  33. 33.
    de la Hoya M, Gutiérrez-Enríquez S, Velasco E, Osorio A, Sanchez de Abajo A, Vega A, Salazar R, Esteban E, Llort G, Gonzalez-Sarmiento R, Carracedo A, Benítez J, Miner C, Díez O, Díaz-Rubio E, Caldes T (2006) Genomic rearrangements at the BRCA1 locus in spanish families with breast/ovarían cáncer. Clin Chem 52:1480–1485CrossRefGoogle Scholar
  34. 34.
    Palanca Suela S, Esteban Cardeñosa E, Barragán González E, Oltra Soler S, de Juan Jiménez I, Chirivella González I, Segura Huerta A, Guillén Ponce C, Martínez de Dueñas E, Bolufer Gilabert P, Group for assessment of hereditary cancer of Valencia community (2008) Identification of a novel BRCA1 large genomic rearrangement in a Spanish breast/ovarian cancer family. Breast Cancer Res Treat 112:63–67PubMedCrossRefGoogle Scholar
  35. 35.
    Miramar MD, Calvo MT, Rodriguez A, Antón A, Lorente F, Barrio E, Herrero A, Burriel J, García de Jalón A (2008) Genetic analysis of BRCA1 and BRCA2 in breast/ovarian cáncer families from Aragon (Spain): two novel truncate mutations and a large genomic deletion in BRCA1. Breast Cancer Res Treat 112:353–358PubMedCrossRefGoogle Scholar
  36. 36.
    del Valle J, Feliubadaló L, Nadal M, Teulé A, Miró R, Cuesta R, Tornero E, Menéndez M, Darder E, Brunet J, Capellà G, Blanco I, Lázaro C (2010) Identification and comprehensive characterization of large genomic rearrangements in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat 122:733–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Alejandro Sanchez
    • 1
  • Paola Faundez
    • 1
  • Pilar Carvallo
    • 1
  1. 1.Department of Cell and Molecular Biology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations