Skip to main content

Advertisement

Log in

Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FAS:

Fatty acid synthase

ER+:

Estrogen receptor positive

ER−:

Estrogen receptor negative

DAPK2:

Death associated kinase 2

BNIP3:

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

ACC:

Acetyl-CoA carboxylase

TOFA:

5-(Tetradecyloxy)-2-furoic acid

qRT-PCR:

Quantitative real-time PCR

References

  1. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  PubMed  CAS  Google Scholar 

  2. Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    Article  PubMed  CAS  Google Scholar 

  3. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  4. Levi F, Pasche C, Lucchini F, Ghidoni R, Ferraroni M, La Vecchia C (2005) Resveratrol and breast cancer risk. Eur J Cancer Prev 14:139–142

    Article  PubMed  CAS  Google Scholar 

  5. Das S, Khan N, Mukherjee S et al (2008) Redox regulation of resveratrol-mediated switching of death signal into survival signal. Free Radic Biol Med 44:82–90

    Article  PubMed  CAS  Google Scholar 

  6. Lin JK, Tsai SH (1999) Chemoprevention of cancer and cardiovascular disease by resveratrol. Proc Natl Sci Counc Repub China B 23:99–106

    PubMed  CAS  Google Scholar 

  7. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  PubMed  CAS  Google Scholar 

  8. Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 13:17–24

    Article  Google Scholar 

  9. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224:274–283

    Article  PubMed  CAS  Google Scholar 

  10. Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res 2:409–418

    Article  CAS  Google Scholar 

  11. Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  12. Banerjee S, Bueso-Ramos C, Aggarwal BB (2002) Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62:4945–4954

    PubMed  CAS  Google Scholar 

  13. Harper CE, Patel BB, Wang J, Arabshahi A, Eltoum IA, Lamartiniere CA (2007) Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis 28:1946–1953

    Article  PubMed  CAS  Google Scholar 

  14. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208

    Article  PubMed  CAS  Google Scholar 

  15. Alo’ PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77:474–482

    Article  PubMed  Google Scholar 

  16. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3:2115–2120

    PubMed  CAS  Google Scholar 

  17. Rashid A, Pizer ES, Moga M et al (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150:201–208

    PubMed  CAS  Google Scholar 

  18. Swinnen JV, Roskams T, Joniau S et al (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22

    Article  PubMed  CAS  Google Scholar 

  19. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

  20. Migita T, Ruiz S, Fornari A et al (2009) Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 101:519–532

    Article  PubMed  CAS  Google Scholar 

  21. Bandyopadhyay S, Zhan R, Wang Y et al (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66:5934–5940

    Article  PubMed  CAS  Google Scholar 

  22. Liu H, Liu Y, Zhang JT (2008) A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 7:263–270

    Article  PubMed  Google Scholar 

  23. Furuta E, Pai SK, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68:1003–1011

    Article  PubMed  CAS  Google Scholar 

  24. Furuta E, Okuda H, Kobayashi A, Watabe K (2010) Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta 1805:141–152

    PubMed  CAS  Google Scholar 

  25. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  26. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  27. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  28. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R2

    Article  Google Scholar 

  29. Li C, Lee CJ, Simeone DM (2009) Identification of human pancreatic cancer stem cells. Methods Mol Biol 568:161–173

    Article  PubMed  CAS  Google Scholar 

  30. Huang TT, Lin HC, Chen CC et al (2010) Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways. J Cell Physiol [Epub ahead of print]

  31. Vanamala J, Reddivari L, Radhakrishnan S, Tarver C (2010) Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10:238

    Article  PubMed  Google Scholar 

  32. Lee MH, Choi BY, Kundu JK et al (2009) Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 69(18):7449

    Article  PubMed  CAS  Google Scholar 

  33. Boissy P, Andersen TL, Abdallah BM et al (2005) Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 65(21):9943–9952

    Article  PubMed  CAS  Google Scholar 

  34. Jiang H, Shang X, Wu H et al (2009) Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 8(1):25–33

    PubMed  Google Scholar 

  35. Hwang J-T, Kwon DY, Park OJ, Kim (2008) Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr 2(4):323–326. doi:10.1007/s12263-007-0069-7

    Article  PubMed  CAS  Google Scholar 

  36. Lin JN et al (2010) Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 58(3):1584–1592

    Article  PubMed  CAS  Google Scholar 

  37. Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H (2001) Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 7:1466–1473

    PubMed  CAS  Google Scholar 

  38. Bai Y, Mao QQ, Qin J et al (2010) Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci 101:488–493

    Article  PubMed  CAS  Google Scholar 

  39. Gagliano N, Aldini G, Colombo G et al (2010) The potential of resveratrol against human gliomas. Anticancer Drugs 21:140–150

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, He D, Zhang Q, Han Y, Jin S, Qi F (2009) Resveratrol protects against Cisplatin-induced cardiotoxicity by alleviating oxidative damage. Cancer Biother Radiopharm 24:675–680

    Article  PubMed  CAS  Google Scholar 

  41. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  42. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743

    Article  PubMed  CAS  Google Scholar 

  43. Marx J (2007) Molecular biology. Cancer’s perpetual source? Science 317:1029–1031

    Article  PubMed  CAS  Google Scholar 

  44. Vitrac X, Desmoulière A, Brouillaud B et al (2003) Distribution of (14C)-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci 72:2219–2233

    Article  PubMed  CAS  Google Scholar 

  45. Hamada J, Nakata D, Nakae D et al (2001) Increased oxidative DNA damage in mammary tumor cells by continuous epidermal growth factor stimulation. J Natl Cancer Inst 93:214–219

    Article  PubMed  CAS  Google Scholar 

  46. Whyte L, Huang YY, Torres K, Mehta RG (2007) Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res 67:12007–12017

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J (2006) Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J 397:519–527

    Article  PubMed  CAS  Google Scholar 

  48. Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA (2008) Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 41:59–85

    Article  PubMed  CAS  Google Scholar 

  49. Knowles LM, Yang C, Osterman A, Smith JW (2008) Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. J Biol Chem 283:31378–31384

    Article  PubMed  CAS  Google Scholar 

  50. Bandyopadhyay S, Pai SK, Watabe M et al (2005) FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene 24:5389–5395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health [R01CA124650 and R01CA129000], the Department of Defense, and Susan G. Komen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kounosuke Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, P.R., Okuda, H., Watabe, M. et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 130, 387–398 (2011). https://doi.org/10.1007/s10549-010-1300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1300-6

Keywords

Navigation