Advertisement

Breast Cancer Research and Treatment

, Volume 129, Issue 3, pp 785–797 | Cite as

Mitochondrial amplification selectively increases doxorubicin sensitivity in breast cancer cells with acquired antiestrogen resistance

  • Andrew Skildum
  • Kenneth Dornfeld
  • Kendall Wallace
Preclinical study

Abstract

The metabolic phenotype of cancer, characterized by uncoupled mitochondrial respiration and increased mitochondrial oxidative stress, is an attractive pharmacological target for sensitizing cancer cells to therapies that rely on oxidative stress for their tumor specific cytotoxicity. The identification of specific cancer sub-types for which metabolic priming of tumors prior to chemotherapy is beneficial is critical, particularly in heterogeneous diseases such as breast cancer. The effects of the thiazolidinedione drug troglitazone were examined in normal mammary epithelial cells and cancer cell lines representing three clinically relevant breast cancer phenotypes. Endpoints measured were PGC1α mRNA expression, proliferation, cell cycle phase distribution, mitochondrial capacity and superoxide generation, and sensitivity to the chemotherapy drug doxorubicin. Troglitazone increases expression of PGC1α, a key mediator of mitochondrial biogenesis, in normal mammary epithelial cells and in breast cancer cell lines. The induction of PGC1α mRNA is at least partially dependent on PPARγ activation. In estrogen receptor negative cells and cells with acquired antiestrogen resistance, troglitazone treatment increased mitochondrial superoxide production and mitochondrial capacity. At pharmacologically achievable doses, troglitazone pretreatment significantly enhanced the sensitivity of cancer cells to the chemotherapy agent doxorubicin. This effect was most dramatic in estrogen receptor positive cells with acquired antiestrogen resistance, in which troglitazone and doxorubicin combined had superadditive effects compared to treatment with either agent alone. In contrast, troglitazone treatment did not appreciably sensitize non-malignant mammary epithelial cells to doxorubicin induced cytotoxicity, despite increasing PGC1α mRNA. These data suggest that troglitazone or a similarly acting compound could be used to selectively prime tumor cells to the cytotoxic effects of anticancer agents such as doxorubicin and ionizing radiation. This novel treatment strategy may be most effective in women with antiestrogen insensitive tumors, a patient population with historically poor response to traditional therapies.

Keywords

Breast cancer Troglitazone Mitochondrial biogenesis Doxorubicin Antiestrogen resistance Sensitization ROS 

Notes

Acknowledgments

The authors thank Dr. Robert Clarke of the Vincent T. Lombardi Cancer Center, Georgetown University Medical School, Washington, DC for the kind gift of the ER positive, antiestrogen resistant LCC9 cell line. We also appreciate the efforts of Drs. Robert Cormier and George Trachte of the University of Minnesota Medical School—Duluth for helpful comments during preparation of the manuscript. This study was supported by an Institutional Research and Academic Career Development Award by the NIGMS (1K12 GM074628-01A2; P.I.: George Trachte).

Conflict of interest

Drs. Skildum, Dornfeld and Wallace declare that they have no conflict of interests related to the work described herein.

References

  1. 1.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMedGoogle Scholar
  2. 2.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedCrossRefGoogle Scholar
  3. 3.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCrossRefGoogle Scholar
  4. 4.
    Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707PubMedCrossRefGoogle Scholar
  5. 5.
    Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662PubMedCrossRefGoogle Scholar
  6. 6.
    Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674PubMedCrossRefGoogle Scholar
  7. 7.
    Penta JS et al (2001) Mitochondrial DNA in human malignancy. Mutat Res 488(2):119–133PubMedCrossRefGoogle Scholar
  8. 8.
    Singh KK (2006) Mitochondria damage checkpoint, aging, and cancer. Ann N Y Acad Sci 1067:182–190PubMedCrossRefGoogle Scholar
  9. 9.
    Weinberg F et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107(19):8788–8793PubMedCrossRefGoogle Scholar
  10. 10.
    Harrington KJ et al (2000) Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model. Clin Cancer Res 6(12):4939–4949PubMedGoogle Scholar
  11. 11.
    Pisters PW et al (2003) Phase I trial of preoperative concurrent doxorubicin and radiation therapy, surgical resection, and intraoperative electron-beam radiation therapy for patients with localized retroperitoneal sarcoma. J Clin Oncol 21(16):3092–3097PubMedCrossRefGoogle Scholar
  12. 12.
    Pisters PW et al (2004) Phase I trial of preoperative doxorubicin-based concurrent chemoradiation and surgical resection for localized extremity and body wall soft tissue sarcomas. J Clin Oncol 22(16):3375–3380PubMedCrossRefGoogle Scholar
  13. 13.
    Zaytseva YY et al (2008) Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Mol Cancer 7:90PubMedCrossRefGoogle Scholar
  14. 14.
    Patel J, Anderson RJ, Rappaport EB (1999) Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week randomized, placebo-controlled study. Diabetes Obes Metab 1(3):165–172PubMedCrossRefGoogle Scholar
  15. 15.
    Suter SL et al (1992) Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15(2):193–203PubMedCrossRefGoogle Scholar
  16. 16.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90PubMedCrossRefGoogle Scholar
  17. 17.
    Schreiber SN et al (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101(17):6472–6477PubMedCrossRefGoogle Scholar
  18. 18.
    Puigserver P et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839PubMedCrossRefGoogle Scholar
  19. 19.
    Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23(8):1616–1622PubMedCrossRefGoogle Scholar
  20. 20.
    Clarke R et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22(47):7316–7339PubMedCrossRefGoogle Scholar
  21. 21.
    Yu HN et al (2008) Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells. Biochem Biophys Res Commun 377(1):242–247PubMedCrossRefGoogle Scholar
  22. 22.
    Suzuki T et al (2006) Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions. Endocr Relat Cancer 13(1):233–250PubMedCrossRefGoogle Scholar
  23. 23.
    Talbert DR et al (2008) Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells. Breast Cancer Res Treat 108(1):23–33PubMedCrossRefGoogle Scholar
  24. 24.
    Wang X, Kilgore MW (2002) Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol 194(1–2):123–133PubMedCrossRefGoogle Scholar
  25. 25.
    Yin Y et al (2009) Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res 69(2):687–694PubMedCrossRefGoogle Scholar
  26. 26.
    Llopis J et al (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97(8):4363–4368PubMedCrossRefGoogle Scholar
  27. 27.
    Gardner OS et al (2003) Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation. J Biol Chem 278(47):46261–46269PubMedCrossRefGoogle Scholar
  28. 28.
    Skildum A, Faivre E, Lange CA (2005) Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 19(2):327–339PubMedCrossRefGoogle Scholar
  29. 29.
    Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82(8):2394–2398PubMedCrossRefGoogle Scholar
  30. 30.
    Brunner N et al (1997) MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 57(16):3486–3493PubMedGoogle Scholar
  31. 31.
    Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248(17):6251–6253PubMedGoogle Scholar
  32. 32.
    Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915PubMedCrossRefGoogle Scholar
  33. 33.
    Osborne CK, Wakeling A, Nicholson RI (2004) Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90(1):S2–S6PubMedCrossRefGoogle Scholar
  34. 34.
    Pagel-Langenickel I et al (2008) PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J Biol Chem 283(33):22464–22472PubMedCrossRefGoogle Scholar
  35. 35.
    Young PW et al (1998) Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther 284(2):751–759PubMedGoogle Scholar
  36. 36.
    Li X et al (2009) Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor gamma. Cell Res 19(6):720–732PubMedCrossRefGoogle Scholar
  37. 37.
    Turturro F et al (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor gamma-independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10(20):7022–7030PubMedCrossRefGoogle Scholar
  38. 38.
    Yang CC et al (2007) Peroxisome proliferator-activated receptor gamma-independent suppression of androgen receptor expression by troglitazone mechanism and pharmacologic exploitation. Cancer Res 67(7):3229–3238PubMedCrossRefGoogle Scholar
  39. 39.
    Leesnitzer LM et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41(21):6640–6650PubMedCrossRefGoogle Scholar
  40. 40.
    Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25PubMedCrossRefGoogle Scholar
  41. 41.
    Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319(1):1–7PubMedCrossRefGoogle Scholar
  42. 42.
    Vander Heiden MG et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499PubMedCrossRefGoogle Scholar
  43. 43.
    Burstein HJ et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79(3):391–397PubMedCrossRefGoogle Scholar
  44. 44.
    Davies GF, Juurlink BH, Harkness TA (2009) Troglitazone reverses the multiple drug resistance phenotype in cancer cells. Drug Des Dev Ther 3:79–88Google Scholar
  45. 45.
    Wei S, Kulp SK, Chen CS (2010) Energy restriction as an antitumor target of thiazolidinediones. J Biol Chem 285(13):9780–9791PubMedCrossRefGoogle Scholar
  46. 46.
    Yan J et al (2010) Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling. Autophagy 6(1):67–73PubMedCrossRefGoogle Scholar
  47. 47.
    Yin F et al (2001) Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun 286(5):916–922PubMedCrossRefGoogle Scholar
  48. 48.
    Wang Y, Fang F, Wong CW Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 80(1):80–85Google Scholar
  49. 49.
    Madsen KG et al (2008) Electrochemical oxidation of troglitazone: identification and characterization of the major reactive metabolite in liver microsomes. Chem Res Toxicol 21(10):2035–2041PubMedCrossRefGoogle Scholar
  50. 50.
    Loi CM et al (1999) Clinical pharmacokinetics of troglitazone. Clin Pharmacokinet 37(2):91–104PubMedCrossRefGoogle Scholar
  51. 51.
    Loi CM et al (1997) Lack of effect of type II diabetes on the pharmacokinetics of troglitazone in a multiple-dose study. J Clin Pharmacol 37(12):1114–1120PubMedGoogle Scholar
  52. 52.
    Lee YM et al (2008) Mechanisms of 2-methoxyestradiol-induced apoptosis and G2/M cell-cycle arrest of nasopharyngeal carcinoma cells. Cancer Lett 268(2):295–307PubMedCrossRefGoogle Scholar
  53. 53.
    Russo T et al (1995) A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 270(49):29386–29391PubMedCrossRefGoogle Scholar
  54. 54.
    Hsu CW et al (2010) Mitochondrial DNA content as a potential marker to predict response to anthracycline in breast cancer patients. Breast J 16(3):264–270Google Scholar
  55. 55.
    Fujisawa K et al (2009) TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis. Biochem Biophys Res Commun 379(1):43–48PubMedCrossRefGoogle Scholar
  56. 56.
    Kukidome D et al (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55(1):120–127PubMedCrossRefGoogle Scholar
  57. 57.
    Fukano M et al (2000) Subacute hepatic failure associated with a new antidiabetic agent, troglitazone: a case report with autopsy examination. Hum Pathol 31(2):250–253PubMedCrossRefGoogle Scholar
  58. 58.
    Watkins PB, Whitcomb RW (1998) Hepatic dysfunction associated with troglitazone. N Engl J Med 338(13):916–917PubMedCrossRefGoogle Scholar
  59. 59.
    Ong MM, Latchoumycandane C, Boelsterli UA (2007) Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci 97(1):205–213PubMedCrossRefGoogle Scholar
  60. 60.
    Henney JE (2000) Withdrawal of Troglitazone and Cisapride. JAMA 283Google Scholar
  61. 61.
    Lipscombe LL et al (2007) Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 298(22):2634–2643PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Andrew Skildum
    • 1
  • Kenneth Dornfeld
    • 1
    • 2
  • Kendall Wallace
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Minnesota Medical SchoolDuluthUSA
  2. 2.St. Mary’s/Duluth Clinic Cancer CenterDuluthUSA

Personalised recommendations