Breast Cancer Research and Treatment

, Volume 129, Issue 2, pp 331–345 | Cite as

Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells

  • Chia-Hwa Lee
  • Ya-Chieh Chang
  • Ching-Shyang Chen
  • Shih-Hsin Tu
  • Ying-Jan Wang
  • Li-Ching Chen
  • Yu-Jia Chang
  • Po-Li Wei
  • Hui-Wen Chang
  • Chien-Hsi Chang
  • Ching-Shui Huang
  • Chih-Hsiung Wu
  • Yuan-Soon Ho
Preclinical study


The primary aim of this study was to elucidate the role of the estrogen receptor (ER), a transcription factor involved in the nicotine- and 17β-estradiol (E2)-mediated up-regulation of α9-nAChR gene expression. A real-time polymerase chain reaction (PCR) assay was used to quantify the α9-nAChR mRNA expression levels of surgically isolated (n = 339) and laser-capture microdissected tissues (ER+ versus ER−, n = 6 per group). Chromatin immunoprecipitation (ChIP) and luciferase-promoter activity assays were used to investigate the ER-mediated transcriptional regulation of α9-nAChR gene expression. We observed that breast tumors with higher α9-nAChR mRNA expression levels (i.e., a mean fold ratio in the tumor/normal-paired samples of greater than tenfold) were associated with the lowest 5-year disease-specific survival rate (50%, dead/alive = 4/4, total = 8 patients, P = 0.006), in contrast to breast tumors with low levels (i.e., a mean fold ratio of less than onefold) of α9-nAChR expression (88%, dead/alive = 3/22, total = 25 patients). Furthermore, higher α9-nAChR mRNA expression levels were preferentially detected in ER+ tumor tissues in comparison to ER− tumor tissues (ER+ versus ER− patients: n = 160 vs. 72; mean fold ratios of α9-nAChR expression = 11 ± 3 vs. 6.7 ± 2.3 fold, respectively). In vitro promoter-binding assays demonstrated that the ER is a major transcription factor that mediates nicotine- and E2-induced up-regulation of α9-nAChR gene expression in MCF-7 cells. In conclusion, our data indicate that the ER plays a central role in mediating α9-nAChR gene up-regulation in response to either nicotine or E2 stimulation.


Estrogen receptor Nicotine Estrogen Breast cancer AP1 



Chromatin immunoprecipitation


Dimethyl sulfoxide




Estrogen receptor




Laser-capture microdissection




Nicotinic receptor




Progesterone receptor



This study was supported by the National Science Council [NSC 96-2628-B-038-003-MY3(1-3), NSC 98-2320-B-038-006-MY3(1-3)] and DOH99-TD-C-111-008 to Dr. Ho, and [NSC 97-2314-B-038-034-MY3(1-3)] to Dr. Wu, and by the Cathay Medical Center [96CGH-TMU-05 and 97CGH-TMU-02].

Supplementary material

10549_2010_1209_MOESM1_ESM.tif (347 kb)
Supplementary material 1 (TIFF 346 kb)
10549_2010_1209_MOESM2_ESM.tif (3.2 mb)
Supplementary material 2 (TIFF 3303 kb)
10549_2010_1209_MOESM3_ESM.tif (854 kb)
Supplementary material 3 (TIFF 853 kb)
10549_2010_1209_MOESM4_ESM.tif (3.8 mb)
Supplementary material 4 (TIFF 3919 kb)
10549_2010_1209_MOESM5_ESM.tif (1.3 mb)
Supplementary material 5 (TIFF 1347 kb)


  1. 1.
    Poola I, De Witty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11:481–483PubMedCrossRefGoogle Scholar
  2. 2.
    Sagiv SK, Gaudet MM, Eng SM, Abrahamson PE, Shantakumar S, Teitelbaum SL, Britton JA, Bell P, Thomas JA, Neugut AI, Santella RM, Gammon MD (2007) Active and passive cigarette smoke and breast cancer survival. Ann Epidemiol 17:385–393PubMedCrossRefGoogle Scholar
  3. 3.
    Lin Y, Kikuchi S, Tamakoshi K, Wakai K, Kondo T, Niwa Y, Yatsuya H, Nishio K, Suzuki S, Tokudome S, Yamamoto A, Toyoshima H, Mori M, Tamakoshi A (2008) Active smoking, passive smoking, and breast cancer risk: findings from the Japan collaborative cohort study for evaluation of cancer risk. J Epidemiol 18:77–83PubMedCrossRefGoogle Scholar
  4. 4.
    Slattery ML, Curtin K, Giuliano AR, Sweeney C, Baumgartner R, Edwards S, Wolff RK, Baumgartner KB, Byers T (2008) Active and passive smoking, IL6, ESR1, and breast cancer risk. Breast Cancer Res Treat 109:101–111PubMedCrossRefGoogle Scholar
  5. 5.
    Benowitz NL, Jacob P III (1984) Nicotine and carbon monoxide intake from high- and low-yield cigarettes. Clin Pharmacol Ther 36:265–270PubMedCrossRefGoogle Scholar
  6. 6.
    Armitage AK, Dollery CT, George CF, Houseman TH, Lewis PJ, Turner DM (1975) Absorption and metabolism of nicotine from cigarettes. Br Med J 4:313–316PubMedCrossRefGoogle Scholar
  7. 7.
    Lindell G, Farnebo LO, Chen D, Nexo E, Rask Madsen J, Bukhave K, Graffner H (1993) Acute effects of smoking during modified sham feeding in duodenal ulcer patients. An analysis of nicotine, acid secretion, gastrin, catecholamines, epidermal growth factor, prostaglandin E2, and bile acids. Scand J Gastroenterol 28:487–494PubMedCrossRefGoogle Scholar
  8. 8.
    Mei J, Hu H, McEntee M, Plummer H III, Song P, Wang HC (2003) Transformation of non-cancerous human breast epithelial cell line MCF10A by the tobacco-specific carcinogen NNK. Breast Cancer Res Treat 79:95–105PubMedCrossRefGoogle Scholar
  9. 9.
    Siriwardhana N, Choudhary S, Wang HC (2008) Precancerous model of human breast epithelial cells induced by NNK for prevention. Breast Cancer Res Treat 109:427–441PubMedCrossRefGoogle Scholar
  10. 10.
    Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (2007) Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci 97:279–287PubMedCrossRefGoogle Scholar
  11. 11.
    Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, Banerjee S, Carless M, Kim E, Coppola D, Haura E, Chellappan S (2008) Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer 124:36–45CrossRefGoogle Scholar
  12. 12.
    Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7:833–839PubMedCrossRefGoogle Scholar
  13. 13.
    Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ach-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276PubMedCrossRefGoogle Scholar
  14. 14.
    Avramopoulou V, Mamalaki A, Tzartos SJ (2004) Soluble, oligomeric, and ligand-binding extracellular domain of the human alpha7 acetylcholine receptor expressed in yeast: replacement of the hydrophobic cysteine loop by the hydrophilic loop of the ACh-binding protein enhances protein solubility. J Biol Chem 279:38287–38293PubMedCrossRefGoogle Scholar
  15. 15.
    Schuller HM (2007) Nitrosamines as nicotinic receptor ligands. Life Sci 80:2274–2280PubMedCrossRefGoogle Scholar
  16. 16.
    Schuller HM, Orloff M (1998) Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol 55:1377–1384PubMedCrossRefGoogle Scholar
  17. 17.
    Dasgupta P, Chellappan SP (2006) Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5:2324–2328PubMedCrossRefGoogle Scholar
  18. 18.
    Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103:6332–6337PubMedCrossRefGoogle Scholar
  19. 19.
    Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, Chellappan S (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116:2208–2217PubMedCrossRefGoogle Scholar
  20. 20.
    Jin Z, Gao F, Flagg T, Deng X (2004) Nicotine induces multi-site phosphorylation of bad in association with suppression of apoptosis. J Biol Chem 279:23837–23844PubMedCrossRefGoogle Scholar
  21. 21.
    Xu J, Huang H, Pan C, Zhang B, Liu X, Zhang L (2007) Nicotine inhibits apoptosis induced by cisplatin in human oral cancer cells. Int J Oral Maxillofac Surg 36:739–744PubMedCrossRefGoogle Scholar
  22. 22.
    Chlebowski RT, Kuller LH, Prentice RL, Stefanick ML, Manson JE, Gass M, Aragaki AK, Ockene JK, Lane DS, Sarto GE, Rajkovic A, Schenken R, Hendrix SL, Ravdin PM, Rohan TE, Yasmeen S, Anderson G (2009) Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med 360:573–587PubMedCrossRefGoogle Scholar
  23. 23.
    Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276:36865–36868PubMedCrossRefGoogle Scholar
  25. 25.
    Daniell HW (1980) Estrogen receptors, breast cancer, and smoking. N Engl J Med 302:1478PubMedGoogle Scholar
  26. 26.
    Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ, Chang YJ, Tam KW, Wei PL, Cheng TC, Chu JS, Chen LC, Wu CH, Ho YS (2010) Overexpression and activation of the {alpha}9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 102(17):1322–1335PubMedCrossRefGoogle Scholar
  27. 27.
    Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T, Yamasaki Y, Kajimoto Y, Kamada T (1994) Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 269:16433–16442PubMedGoogle Scholar
  28. 28.
    Lewis JS, Thomas TJ, Pestell RG, Albanese C, Gallo MA, Thomas T (2005) Differential effects of 16alpha-hydroxyestrone and 2-methoxyestradiol on cyclin D1 involving the transcription factor ATF-2 in MCF-7 breast cancer cells. J Mol Endocrinol 34:91–105PubMedCrossRefGoogle Scholar
  29. 29.
    Ho YS, Lai CS, Liu HI, Ho SY, Tai C, Pan MH, Wang YJ (2007) Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochem Pharmacol 73:1786–1795PubMedGoogle Scholar
  30. 30.
    Aerts JL, Gonzales MI, Topalian SL (2004) Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques 36:84–86, 88, 90–81PubMedGoogle Scholar
  31. 31.
    Tu SH, Chang CC, Chen CS, Tam KW, Wang YJ, Lee CH, Lin HW, Cheng TC, Huang CS, Chu JS, Shih NY, Chen LC, Leu SJ, Ho YS, Wu CH (2010) Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121(3):539–553PubMedCrossRefGoogle Scholar
  32. 32.
    Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891PubMedCrossRefGoogle Scholar
  33. 33.
    Huang C, Yang L, Li Z, Yang J, Zhao J, Dehui X, Liu L, Wang Q, Song T (2007) Detection of CCND1 amplification using laser capture microdissection coupled with real-time polymerase chain reaction in human esophageal squamous cell carcinoma. Cancer Genet Cytogenet 175:19–25PubMedCrossRefGoogle Scholar
  34. 34.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (remark). J Natl Cancer Inst 97:1180–1184PubMedCrossRefGoogle Scholar
  35. 35.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) Reporting recommendations for tumor marker prognostic studies (remark). Breast Cancer Res Treat 100:229–235PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Z, Yu X, Shaikh ZA (2008) Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol 228:286–294PubMedCrossRefGoogle Scholar
  37. 37.
    Lee YR, Park J, Yu HN, Kim JS, Youn HJ, Jung SH (2005) Up-regulation of PI3K/Akt signaling by 17beta-estradiol through activation of estrogen receptor-alpha, but not estrogen receptor-beta, and stimulates cell growth in breast cancer cells. Biochem Biophys Res Commun 336:1221–1226PubMedCrossRefGoogle Scholar
  38. 38.
    Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA (2006) Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol 20:3120–3132PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S (2008) Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 40:173–184PubMedCrossRefGoogle Scholar
  40. 40.
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–4931PubMedCrossRefGoogle Scholar
  41. 41.
    Pasapera Limon AM, Herrera-Munoz J, Gutierrez-Sagal R, Ulloa-Aguirre A (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17beta-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene. Mol Cell Endocrinol 200:199–202PubMedCrossRefGoogle Scholar
  42. 42.
    Yamashita H, Nishio M, Toyama T, Sugiura H, Kondo N, Kobayashi S, Fujii Y, Iwase H (2008) Low phosphorylation of estrogen receptor alpha (ERalpha) serine 118 and high phosphorylation of ERalpha serine 167 improve survival in ER-positive breast cancer. Endocr Relat Cancer 15:755–763PubMedCrossRefGoogle Scholar
  43. 43.
    Huang J, Li X, Maguire CA, Hilf R, Bambara RA, Muyan M (2005) Binding of estrogen receptor beta to estrogen response element in situ is independent of estradiol and impaired by its amino terminus. Mol Endocrinol 19:2696–2712PubMedCrossRefGoogle Scholar
  44. 44.
    Glidewell-Kenney C, Weiss J, Lee EJ, Pillai S, Ishikawa T, Ariazi EA, Jameson JL (2005) Ere-independent ERalpha target genes differentially expressed in human breast tumors. Mol Cell Endocrinol 245:53–59PubMedCrossRefGoogle Scholar
  45. 45.
    Lustig LR, Peng H (2002) Chromosome location and characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) gene. Cytogenet Genome Res 98:154–159PubMedCrossRefGoogle Scholar
  46. 46.
    Nezbedova P, Brtko J (2004) 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action. Endocr Regul 38:29–38PubMedGoogle Scholar
  47. 47.
    Duan R, Ginsburg E, Vonderhaar BK (2008) Estrogen stimulates transcription from the human prolactin distal promoter through AP1 and estrogen responsive elements in T47D human breast cancer cells. Mol Cell Endocrinol 281:9–18PubMedCrossRefGoogle Scholar
  48. 48.
    Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33:315–318PubMedCrossRefGoogle Scholar
  49. 49.
    Maskarinec G, Zhang Y, Takata Y, Pagano I, Shumay DM, Goodman MT, Le Marchand L, Nomura AM, Wilkens LR, Kolonel LN (2006) Trends of breast cancer incidence and risk factor prevalence over 25 years. Breast Cancer Res Treat 98:45–55PubMedCrossRefGoogle Scholar
  50. 50.
    Terry PD, Goodman M (2006) Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis. Cancer Epidemiol Biomarkers Prev 15:602–611PubMedCrossRefGoogle Scholar
  51. 51.
    Crabb C (2003) Is breast cancer linked to smoking? Bull World Health Organ 81:74PubMedGoogle Scholar
  52. 52.
    Egan KM, Stampfer MJ, Hunter D, Hankinson S, Rosner BA, Holmes M, Willett WC, Colditz GA (2002) Active and passive smoking in breast cancer: prospective results from the nurses’ health study. Epidemiology 13:138–145PubMedCrossRefGoogle Scholar
  53. 53.
    Nagata C, Mizoue T, Tanaka K, Tsuji I, Wakai K, Inoue M, Tsugane S (2006) Tobacco smoking and breast cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol 36:387–394PubMedCrossRefGoogle Scholar
  54. 54.
    Reynolds P, Hurley S, Goldberg DE, Anton-Culver H, Bernstein L, Deapen D, Horn-Ross PL, Peel D, Pinder R, Ross RK, West D, Wright WE, Ziogas A (2004) Active smoking, household passive smoking, and breast cancer: evidence from the California teachers study. J Natl Cancer Inst 96:29–37PubMedCrossRefGoogle Scholar
  55. 55.
    Hanaoka T, Yamamoto S, Sobue T, Sasaki S, Tsugane S (2005) Active and passive smoking and breast cancer risk in middle-aged Japanese women. Int J Cancer 114:317–322PubMedCrossRefGoogle Scholar
  56. 56.
    Gram IT, Braaten T, Terry PD, Sasco AJ, Adami HO, Lund E, Weiderpass E (2005) Breast cancer risk among women who start smoking as teenagers. Cancer Epidemiol Biomarkers Prev 14:61–66PubMedGoogle Scholar
  57. 57.
    Morabia A, Costanza MC, Bernstein MS, Rielle JC (2002) Ages at initiation of cigarette smoking and quit attempts among women: a generation effect. Am J Public Health 92:71–74PubMedCrossRefGoogle Scholar
  58. 58.
    Steinetz BG, Gordon T, Lasano S, Horton L, Ng SP, Zelikoff JT, Nadas A, Bosland MC (2006) The parity-related protection against breast cancer is compromised by cigarette smoke during rat pregnancy: observations on tumorigenesis and immunological defenses of the neonate. Carcinogenesis 27:1146–1152PubMedCrossRefGoogle Scholar
  59. 59.
    Al-Delaimy WK, Cho E, Chen WY, Colditz G, Willet WC (2004) A prospective study of smoking and risk of breast cancer in young adult women. Cancer Epidemiol Biomarkers Prev 13:398–404PubMedGoogle Scholar
  60. 60.
    Coyle YM (2004) The effect of environment on breast cancer risk. Breast Cancer Res Treat 84:273–288PubMedCrossRefGoogle Scholar
  61. 61.
    Hecht SS (1999) DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res 424:127–142PubMedGoogle Scholar
  62. 62.
    Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110:527–536PubMedGoogle Scholar
  63. 63.
    West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111:81–90PubMedGoogle Scholar
  64. 64.
    Maneckjee R, Minna JD (1990) Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc Natl Acad Sci USA 87:3294–3298PubMedCrossRefGoogle Scholar
  65. 65.
    Trombino S, Cesario A, Margaritora S, Granone P, Motta G, Falugi C, Russo P (2004) Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res 64:135–145PubMedCrossRefGoogle Scholar
  66. 66.
    Teixeira C, Reed JC, Pratt MA (1995) Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res 55:3902–3907PubMedGoogle Scholar
  67. 67.
    Ahmad S, Singh N, Glazer RI (1999) Role of AKT1 in 17beta-estradiol- and insulin-like growth factor I (IGF-I)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem Pharmacol 58:425–430PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Chia-Hwa Lee
    • 1
  • Ya-Chieh Chang
    • 1
  • Ching-Shyang Chen
    • 2
  • Shih-Hsin Tu
    • 2
    • 3
  • Ying-Jan Wang
    • 4
  • Li-Ching Chen
    • 1
  • Yu-Jia Chang
    • 2
    • 5
    • 8
  • Po-Li Wei
    • 2
    • 8
  • Hui-Wen Chang
    • 6
  • Chien-Hsi Chang
    • 6
  • Ching-Shui Huang
    • 2
    • 3
  • Chih-Hsiung Wu
    • 7
  • Yuan-Soon Ho
    • 1
    • 6
    • 8
    • 9
  1. 1.Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
  2. 2.Department of Surgery and Center of Quality Management and Breast Health Center, School of MedicineTaipei Medical University HospitalTaipeiTaiwan
  3. 3.Department of SurgeryCathay General HospitalTaipeiTaiwan
  4. 4.Department of Environmental and Occupational HealthNational Cheng Kung University Medical CollegeTainanTaiwan
  5. 5.Graduate Institute of Clinical MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
  6. 6.Department of Laboratory MedicineTaipei Medical University HospitalTaipeiTaiwan
  7. 7.Department of Surgery, School of MedicineTaipei Medical University-Shuang Ho HospitalJhonghe CityTaiwan
  8. 8.Center of Excellence for Cancer ResearchTaipei Medical UniversityTaipeiTaiwan
  9. 9.Graduate Institute of Biomedical TechnologyTaipei Medical UniversityTaipeiTaiwan

Personalised recommendations