Breast Cancer Research and Treatment

, Volume 123, Issue 3, pp 815–818 | Cite as

Estrogen deficiency and bone loss in women with breast cancer

  • Charles L. Shapiro
Invited Commentary

All women will lose bone as a consequence of normal aging and menopause-mediated bone loss due to the estrogen deficiency. However, not all women will develop osteoporosis. The development of osteoporosis can be thought of as an equation [1]: on one side of the equation peak bone mass usually attained by about age 30; on the other side is ongoing bone loss due to normal aging, menopausal-related bone loss, and genetic determinants such as family history, race, and low body mass index, as well as exposures or conditions that are potentially modifiable (i.e., current cigarette smoking, alcohol intake greater than two drinks per day, and chronic glucocorticoid therapy) [2, 3]. Taking these factors into account, each woman will have a peak bone mass and a unique set of risk factors for bone loss that determines whether she will experience a non-traumatic fracture or osteoporosis. In postmenopausal women with breast cancer, the relative risks of osteoporotic fractures are higher than women...


Bone Mineral Density Bone Loss Adjuvant Chemotherapy Premenopausal Woman Estrogen Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramaswamy B, Shapiro CL (2003) Osteopenia and osteoporosis in women with breast cancer. Semin Oncol 30(6):763–775CrossRefPubMedGoogle Scholar
  2. 2.
    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936CrossRefPubMedGoogle Scholar
  3. 3.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Z, Maricic M, Aragaki AK, Mouton C, Arendell L, Lopez AM, Bassford T, Chlebowski RT (2009) Fracture risk increases after diagnosis of breast or other cancers in postmenopausal women: results from the Women’s Health Initiative. Osteoporos Int 20(4):527–536CrossRefPubMedGoogle Scholar
  5. 5.
    Imai Y, Kondoh S, Kouzmenko A, Kato S (2010) Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 24(5):877–885CrossRefPubMedGoogle Scholar
  6. 6.
    Gnant M, Mlineritsch B, Luschin-Ebengreuth G, Kainberger F, Kassmann H, Piswanger-Solkner JC, Seifert M, Ploner F, Menzel C, Dubsky P et al (2008) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol 9(9):840–849CrossRefPubMedGoogle Scholar
  7. 7.
    Pant S, Shapiro CL (2008) Aromatase inhibitor-associated bone loss: clinical considerations. Drugs 68(18):2591–2600CrossRefPubMedGoogle Scholar
  8. 8.
    Molina JR, Barton DL, Loprinzi CL (2005) Chemotherapy-induced ovarian failure: manifestations and management. Drug Saf 28(5):401–416CrossRefPubMedGoogle Scholar
  9. 9.
    Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19(14):3306–3311PubMedGoogle Scholar
  10. 10.
    Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A et al (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36(1):22–31CrossRefPubMedGoogle Scholar
  11. 11.
    Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27(1):1–11CrossRefPubMedGoogle Scholar
  12. 12.
    Hadjidakis DJ, Androulakis II (2006) Bone Remodeling. Ann N Y Acad Sci 1092(1):385–396CrossRefPubMedGoogle Scholar
  13. 13.
    Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332(5):305–311CrossRefPubMedGoogle Scholar
  14. 14.
    Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29(2):155–192CrossRefPubMedGoogle Scholar
  15. 15.
    Boyce BF, Xing L (2007) The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 5(3):98–104CrossRefPubMedGoogle Scholar
  16. 16.
    Kostenuik PJ (2005) Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 5(6):618–625CrossRefPubMedGoogle Scholar
  17. 17.
    Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409CrossRefPubMedGoogle Scholar
  18. 18.
    Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194CrossRefPubMedGoogle Scholar
  19. 19.
    Imai Y, Youn M-Y, Kondoh S, Nakamura T, Kouzmenko A, Matsumoto T, Takada I, Takaoka K, Kato S (2009) Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts. Ann N Y Acad Sci 1173(S1):E31–E39CrossRefPubMedGoogle Scholar
  20. 20.
    Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27(3):535–545CrossRefPubMedGoogle Scholar
  21. 21.
    Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823CrossRefPubMedGoogle Scholar
  22. 22.
    Weitzmann MN, Pacifici R (2005) Role of the immune system in postmenopausal bone loss. Curr Osteoporos Rep 3(3):92–97CrossRefPubMedGoogle Scholar
  23. 23.
    Weitzmann MN, Pacifici R (2007) T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci 1116:360–375CrossRefPubMedGoogle Scholar
  24. 24.
    Zallone A (2006) Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci 1068:173–179CrossRefPubMedGoogle Scholar
  25. 25.
    Weitzmann MN, Pacifici R (2005) The role of T lymphocytes in bone metabolism. Immunol Rev 208:154–168CrossRefPubMedGoogle Scholar
  26. 26.
    Lea CK, Flanagan AM (1999) Ovarian androgens protect against bone loss in rats made oestrogen deficient by treatment with ICI 182, 780. J Endocrinol 160(1):111–117CrossRefPubMedGoogle Scholar
  27. 27.
    Fogelman I, Blake GM, Blamey R, Palmer M, Sauerbrei W, Schumacher M, Serin D, Stewart A, Wilpshaar W (2003) Bone mineral density in premenopausal women treated for node-positive early breast cancer with 2 years of goserelin or 6 months of cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Osteoporos Int 14(12):1001–1006CrossRefPubMedGoogle Scholar
  28. 28.
    Saarto T, Blomqvist C, Valimaki M, Makela P, Sarna S, Elomaa I (1997) Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 15(4):1341–1347PubMedGoogle Scholar
  29. 29.
    Crandall C, Petersen L, Ganz PA, Greendale GA (2004) Bone mineral density and adjuvant therapy in breast cancer survivors. Breast Cancer Res Treat 88(3):257–261CrossRefPubMedGoogle Scholar
  30. 30.
    Greep NC, Giuliano AE, Hansen NM, Taketani T, Wang HJ, Singer FR (2003) The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med 114(8):653–659CrossRefPubMedGoogle Scholar
  31. 31.
    Goodwin PJ, Ennis M, Pritchard KI, Trudeau M, Hood N (1999) Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol 17(8):2365–2370PubMedGoogle Scholar
  32. 32.
    Anderson RA, Themmen AP, Al-Qahtani A, Groome NP, Cameron DA (2006) The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod 21(10):2583–2592CrossRefPubMedGoogle Scholar
  33. 33.
    Shapiro CL, Phillips G, Van Poznak CH, Jackson R, Leboff MS, Woodard S, Lemeshow S (2005) Baseline bone mineral density of the total lumbar spine may predict for chemotherapy-induced ovarian failure. Breast Cancer Res Treat 90(1):41–46CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Z, Arendell L, Aickin M, Cauley J, Lewis CE, Chlebowski R (2008) Hip bone density predicts breast cancer risk independently of Gail score: results from the Women’s Health Initiative. Cancer 113(5):907–915CrossRefPubMedGoogle Scholar
  35. 35.
    Termine JD, Wong M (1998) Post-menopausal women and osteoporosis: available choices for maintenance of skeletal health. Maturitas 30(3):241–245CrossRefPubMedGoogle Scholar
  36. 36.
    Shapiro CL, Halabi S, Gibson G et al (2008) Effect of zoledronic acid (ZA) on bone mineral density (BMD) in premenopausal women who develop ovarian failure (OF) due to adjuvant chemotherapy (AdC): first results from CALGB trial 79809. J Clin Onc 26 (May 20 Suppl; abstract 512)Google Scholar
  37. 37.
    Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar RN, Shapiro CL, Shields A, Smith MR, Srinivas S et al (2009) NCCN task force report: bone health in cancer care. J Natl Compr Cancer Netw 7(Suppl 3):S1–S32 (quiz S33–S35)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Ohio State University Medical Center, James Cancer HospitalColumbusCanada

Personalised recommendations