Breast Cancer Research and Treatment

, Volume 127, Issue 3, pp 649–657 | Cite as

Overexpression of the urokinase receptor mRNA splice variant uPAR-del4/5 affects tumor-associated processes of breast cancer cells in vitro and in vivo

  • Sumito Sato
  • Charlotte Kopitz
  • Bettina Grismayer
  • Nathalie Beaufort
  • Ute Reuning
  • Manfred Schmitt
  • Thomas Luther
  • Matthias Kotzsch
  • Achim Krüger
  • Viktor Magdolen
Preclinical study


uPAR, the three-domain membrane receptor of the serine protease urokinase, plays a crucial role in tumor growth and metastasis. Several mRNA splice variants of this receptor have been reported. One of these, uPAR-del4/5, lacking exons 4 and 5, and thus encoding a uPAR form lacking domain DII, is specifically overexpressed in breast cancer and represents a statistically independent prognostic factor for distant metastasis-free survival in breast cancer patients. The aim of the present study was to examine the molecular and cellular properties of the encoded uPAR-del4/5 protein. To investigate the impact of the uPAR-del4/5 overexpression on in vitro and in vivo aspects of tumor progression (e.g., proliferation, adhesion, invasion, metastatic seeding, and/or metastatic growth), we combined the analysis of transfected cancer cell lines with a murine xenograft tumor model. Increased expression of uPAR-del4/5 in human cancer cells led to reduced adhesion to several extracellular matrix proteins and decreased invasion through MatrigelTM, while cell proliferation was not affected in vitro. Moreover, invasion of uPAR-del4/5 overexpressing cells was not altered by addition of urokinase, while that of uPAR-wild-type overexpressing cells was drastically increased. Accordingly, we observed that, in contrast to uPAR-wild-type, uPAR-del4/5 does not interact with urokinase. On the other hand, when overexpressed in human breast cancer cells, uPAR-del4/5 distinctly impaired metastatic dissemination and growth in vivo. We demonstrate that the uPAR-del4/5 mRNA splice variant mediates tumor-relevant biological processes in vitro and in vivo. Our results thus illustrate how tumor-specific alternative splicing can distinctly impact the biology of the tumor.


Breast cancer Splice variant Adhesion Invasion Tumor xenograft uPAR 



This study was supported in part by grants provided by the Deutsche Krebshilfe e.V., Germany (Grant No. 106 162) to MK and VM, and by the Framework Programme 7 project HEALTH-2007-201279, Microenvimet to AK. We are grateful to Sabine Creutzburg, Katja Richter, and Antje Zobjack for excellent technical assistance.

Conflicts of interest statement



  1. 1.
    Blasi F, Sidenius N (2010) The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 584:1923–1930PubMedCrossRefGoogle Scholar
  2. 2.
    Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943PubMedCrossRefGoogle Scholar
  3. 3.
    Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, Schmitt M (1998) Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis. Int J Oncol 13:893–906PubMedGoogle Scholar
  4. 4.
    Harbeck N, Kates RE, Gauger K, Willems A, Kiechle M, Magdolen V, Schmitt M (2004) Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 91:450–456PubMedGoogle Scholar
  5. 5.
    Høyer-Hansen G, Lund IK (2007) Urokinase receptor variants in tissue and body fluids. Adv Clin Chem 44:65–102PubMedCrossRefGoogle Scholar
  6. 6.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312PubMedCrossRefGoogle Scholar
  7. 7.
    Ploug M (2003) Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor. Curr Pharm Des 9:1499–1528PubMedCrossRefGoogle Scholar
  8. 8.
    Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36PubMedCrossRefGoogle Scholar
  9. 9.
    Reuning U, Magdolen V, Hapke S, Schmitt M (2003) Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem 384:1119–1131Google Scholar
  10. 10.
    Llinas P, Le Du MH, Gårdsvoll H, Danø K, Ploug M, Gilquin B, Stura EA, Ménez A (2005) Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide. EMBO J 24:1655–1663PubMedCrossRefGoogle Scholar
  11. 11.
    Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, Li Y, Yuan C, Bian C, Chen L, Furie B, Furie BC, Cines DB, Huang M (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311:656–659PubMedCrossRefGoogle Scholar
  12. 12.
    Gårdsvoll H, Ploug M (2007) Mapping of the vitronectin-binding site on the urokinase receptor: involvement of a coherent receptor interface consisting of residues from both domain I and the flanking interdomain linker region. J Biol Chem 282:13561–13572PubMedCrossRefGoogle Scholar
  13. 13.
    Huai Q, Zhou A, Lin L, Mazar AP, Parry GC, Callahan J, Shaw DE, Furie B, Furie BC, Huang M (2008) Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol 15:422–423PubMedCrossRefGoogle Scholar
  14. 14.
    Stewart CE, Sayers I (2009) Characterisation of urokinase plasminogen activator receptor variants in human airway and peripheral cells. BMC Mol Biol 10:75PubMedCrossRefGoogle Scholar
  15. 15.
    Luther T, Kotzsch M, Meye A, Langerholc T, Fussel S, Olbricht N, Albrecht S, Ockert D, Muehlenweg B, Friedrich K, Grosser M, Schmitt M, Baretton G, Magdolen V (2003) Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 89:705–717PubMedGoogle Scholar
  16. 16.
    Pyke C, Eriksen J, Solberg H, Nielsen BS, Kristensen P, Lund LR, Danø K (1993) An alternatively spliced variant of mRNA for the human receptor for urokinase plasminogen activator. FEBS Lett 326:69–74PubMedCrossRefGoogle Scholar
  17. 17.
    Kotzsch M, Farthmann J, Meye A, Fuessel S, Baretton G, Tjan-Heijnen VC, Schmitt M, Luther T, Sweep FC, Magdolen V, Span PN (2005) Prognostic relevance of uPAR-del4/5 and TIMP-3 mRNA expression levels in breast cancer. Eur J Cancer 41:2760–2768PubMedCrossRefGoogle Scholar
  18. 18.
    Kotzsch M, Sieuwerts AM, Grosser M, Meye A, Fuessel S, Meijer-van Gelder ME, Smid M, Schmitt M, Baretton G, Luther T, Magdolen V, Foekens JA (2008) Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 111:229–240PubMedCrossRefGoogle Scholar
  19. 19.
    Möbus V, Gerharz CD, Press U, Moll R, Beck T, Mellin W, Pollow K, Knapstein PG, Kreienberg R (1992) Morphological, immunohistochemical and biochemical characterization of 6 newly established human ovarian carcinoma cell lines. Int J Cancer 52:76–84PubMedCrossRefGoogle Scholar
  20. 20.
    Luther T, Magdolen V, Albrecht S, Kasper M, Riemer C, Kessler H, Graeff H, Müller M, Schmitt M (1997) Epitope-mapped monoclonal antibodies as tools for functional and morphological analyses of the human urokinase receptor in tumor tissue. Am J Pathol 150:1231–1244PubMedGoogle Scholar
  21. 21.
    Goretzki L, Bognacki J, Koppitz M, Rettenberger P, Magdolen V, Creutzburg S, Hammelburger J, Weidle UH, Wilhelm O, Kessler H, Graeff H, Schmitt M (1997) Quantitative assessment of interaction of urokinase-type plasminogen activator and its receptor (CD87) by use of a solid-phase uPA-ligand binding assay. Fibrinol Proteol 11:11–19CrossRefGoogle Scholar
  22. 22.
    Krüger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gänsbacher B, Schmitt M (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61:1272–1275PubMedGoogle Scholar
  23. 23.
    Kopitz C, Anton M, Gänsbacher B, Krüger A (2005) Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Res 65:8608–8612PubMedCrossRefGoogle Scholar
  24. 24.
    Krüger A, Schirrmacher V, Khokha R (1998) The bacterial lacZ gene: an important tool for metastasis research and evaluation of new cancer therapies. Cancer Metastasis Rev 17:285–294PubMedCrossRefGoogle Scholar
  25. 25.
    Beaufort N, Leduc D, Eguchi H, Mengele K, Hellmann D, Masegi T, Kamimura T, Yasuoka S, Fend F, Chignard M, Pidard D (2007) The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions. Am J Physiol Lung Cell Mol Physiol 292:1263–1272CrossRefGoogle Scholar
  26. 26.
    Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV, Chapman HA (1996) Regulation of integrin function by the urokinase receptor. Science 273:1551–1555PubMedCrossRefGoogle Scholar
  27. 27.
    Xue W, Mizukami I, Todd RF, Petty HR (1997) Urokinase-type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res 57:1682–1689PubMedGoogle Scholar
  28. 28.
    Krüger A, Soeltl R, Lutz V, Wilhelm OG, Magdolen V, Rojo EE, Hantzopoulos PA, Graeff H, Gänsbacher B, Schmitt M (2000) Reduction of breast carcinoma tumor growth and lung colonization by overexpression of the soluble urokinase-type plasminogen activator receptor (CD87). Cancer Gene Ther 7:292–299PubMedCrossRefGoogle Scholar
  29. 29.
    Setyono-Han B, Sturzebecher J, Schmalix WA, Muehlenweg B, Sieuwerts AM, Timmermans M, Magdolen V, Schmitt M, Klijn JG, Foekens JA (2005) Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost 93:779–786PubMedGoogle Scholar
  30. 30.
    Ward AJ, Cooper TA (2010) The pathobiology of splicing. J Pathol 220:152–163PubMedGoogle Scholar
  31. 31.
    Fackenthal JD, Godley LA (2008) Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 1:37–42PubMedCrossRefGoogle Scholar
  32. 32.
    Bjarnadóttir TK, Geirardsdóttir K, Ingemansson M, Mirza MA, Fredriksson R, Schiöth HB (2007) Identification of novel splice variants of Adhesion G protein-coupled receptors. Gene 387:38–48PubMedCrossRefGoogle Scholar
  33. 33.
    Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, Caputi M, Carriero MV, Iaccarino I, Stoppelli MP (2005) The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost 93:205–211PubMedGoogle Scholar
  34. 34.
    Durand MK, Bodker JS, Christensen A, Dupont DM, Hansen M, Jensen JK, Kjelgaard S, Mathiasen L, Pedersen KE, Skeldal S, Wind T, Andreasen PA (2004) Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost 91:438–449PubMedGoogle Scholar
  35. 35.
    Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3:55–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Sumito Sato
    • 1
    • 2
  • Charlotte Kopitz
    • 3
  • Bettina Grismayer
    • 1
  • Nathalie Beaufort
    • 1
  • Ute Reuning
    • 1
  • Manfred Schmitt
    • 1
  • Thomas Luther
    • 4
  • Matthias Kotzsch
    • 4
  • Achim Krüger
    • 3
  • Viktor Magdolen
    • 1
  1. 1.Clinical Research Unit, Department of Obstetrics and GynecologyTechnical University MunichMunichGermany
  2. 2.Department of SurgeryYokohama Asahi Central and General HospitalYokohamaJapan
  3. 3.Institute of Experimental Oncology and Therapy ResearchTechnical University MunichMunichGermany
  4. 4.Institute of PathologyDresden University of TechnologyDresdenGermany

Personalised recommendations