Skip to main content

Advertisement

Log in

Gene expression profile predicts outcome after anthracycline-based adjuvant chemotherapy in early breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Prognosis of early beast cancer is heterogeneous. Today, no histoclinical or biological factor predictive for clinical outcome after adjuvant anthracycline-based chemotherapy (CT) has been validated and introduced in routine use. Using DNA microarrays, we searched for a gene expression signature associated with metastatic relapse after adjuvant anthracycline-based CT without taxane. We profiled a multicentric series of 595 breast cancers including 498 treated with such adjuvant CT. The identification of the prognostic signature was done using a metagene-based supervised approach in a learning set of 323 patients. The signature was then tested on an independent validation set comprising 175 similarly treated patients, 128 of them from the PACS01 prospective clinical trial. We identified a 3-metagene predictor of metastatic relapse in the learning set, and confirmed its independent prognostic impact in the validation set. In multivariate analysis, the predictor outperformed the individual current prognostic factors, as well as the Nottingham Prognostic Index-based classifier, both in the learning and the validation sets, and added independent prognostic information. Among the patients treated with adjuvant anthracycline-based CT, with a median follow-up of 68 months, the 5-year metastasis-free survival was 82% in the “good-prognosis” group and 56% in the “poor-prognosis” group. Our predictor refines the prediction of metastasis-free survival after adjuvant anthracycline-based CT and might help tailoring adjuvant CT regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CT:

Chemotherapy

IPC:

Institut Paoli-Calmettes

CLB:

Centre Léon Bérard

IB:

Institut Bergonié

SBR:

Scarff-Bloom-Richardson

IHC:

Immunohistochemistry

ER:

Estrogen receptor

PR:

Progesterone receptor

FEC:

5-Fluoro-uracile + epirubicine + cyclophosphamide

PCR:

Polymerase chain reaction

MFS:

Metastasis-free survival

HR:

Hazard ratio

References

  1. EBCTCI Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet 365:1687–1717

    Article  Google Scholar 

  2. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez-Angulo AM, Hortobagyi GN, Esteva FJI (2006) Adjuvant therapy with trastuzumab for HER-2/neu-positive breast cancer. Oncologist 11:857–867

    Article  PubMed  CAS  Google Scholar 

  4. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  PubMed  CAS  Google Scholar 

  5. Sparano JA, Hortobagyi GN, Gralow JR, Perez EA, Comis RLI (2010) Recommendations for research priorities in breast cancer by the coalition of cancer cooperative groups scientific leadership council: systemic therapy and therapeutic individualization. Breast Cancer Res Treat 119:511–527

    Article  PubMed  Google Scholar 

  6. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Senn HJI (2001) Meeting highlights: international consensus panel on the treatment of primary breast cancer. Seventh international conference on adjuvant therapy of primary breast cancer. J Clin Oncol 19:3817–3827

    PubMed  CAS  Google Scholar 

  7. Colozza M, de Azambuja E, Cardoso F, Bernard C, Piccart MJI (2006) Breast cancer: achievements in adjuvant systemic therapies in the pre-genomic era. Oncologist 11:111–125

    Article  PubMed  CAS  Google Scholar 

  8. Piccart MJ, de Valeriola D, Dal Lago L et al (2005) Adjuvant chemotherapy in 2005: standards and beyond. Breast 14:439–445

    Article  PubMed  CAS  Google Scholar 

  9. Buzdar AU, Singletary SE, Valero V et al (2002) Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res 8:1073–1079

    PubMed  CAS  Google Scholar 

  10. Henderson IC, Berry DA, Demetri GD et al (2003) Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21:976–983

    Article  PubMed  CAS  Google Scholar 

  11. Mamounas EP, Bryant J, Lembersky B et al (2005) Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 23:3686–3696

    Article  PubMed  CAS  Google Scholar 

  12. Martin M, Pienkowski T, Mackey J et al (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352:2302–2313

    Article  PubMed  CAS  Google Scholar 

  13. Roche H, Fumoleau P, Spielmann M et al (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the PACS01 trial. J Clin Oncol 24:5664–5671

    Article  PubMed  CAS  Google Scholar 

  14. Hayes DFI (2005) Prognostic and predictive factors revisited. Breast 14:493–499

    Article  PubMed  Google Scholar 

  15. Hayes DFI (2009) Is there a standard type and duration of adjuvant chemotherapy for early stage breast cancer? Breast 18(Suppl 3):S131–S134

    Article  PubMed  Google Scholar 

  16. Bertucci F, Finetti P, Cervera N et al (2006) Gene expression profiling and clinical outcome in breast cancer. Omics 10:429–443

    Article  PubMed  CAS  Google Scholar 

  17. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  18. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  19. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  20. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  21. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  22. Foekens JA, Atkins D, Zhang Y et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671

    Article  PubMed  CAS  Google Scholar 

  23. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192

    Article  PubMed  CAS  Google Scholar 

  24. Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214

    Article  PubMed  CAS  Google Scholar 

  25. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  PubMed  CAS  Google Scholar 

  26. Ivshina AV, George J, Senko O et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66:10292–10301

    Article  PubMed  CAS  Google Scholar 

  27. Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555

    Article  PubMed  CAS  Google Scholar 

  28. Naderi A, Teschendorff AE, Barbosa-Morais NL et al (2007) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26:1507–1516

    Article  PubMed  CAS  Google Scholar 

  29. Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616

    Article  PubMed  CAS  Google Scholar 

  30. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  31. Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24:1656–1664

    Article  PubMed  CAS  Google Scholar 

  32. Loi S, Haibe-Kains B, Desmedt C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246

    Article  PubMed  CAS  Google Scholar 

  33. Teschendorff AE, Naderi A, Barbosa-Morais NL et al (2006) A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol 7:R101

    Article  PubMed  Google Scholar 

  34. Sotiriou C, Piccart MJI (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    Article  PubMed  CAS  Google Scholar 

  35. Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagyi GNI (2008) Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist 13:477–493

    Article  PubMed  Google Scholar 

  36. Ayers M, Symmans WF, Stec J et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22:2284–2293

    Article  PubMed  CAS  Google Scholar 

  37. Bertucci F, Finetti P, Rougemont J et al (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64:8558–8565

    Article  PubMed  CAS  Google Scholar 

  38. Chang JC, Wooten EC, Tsimelzon A et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362–369

    Article  PubMed  CAS  Google Scholar 

  39. Hannemann J, Oosterkamp HM, Bosch CA et al (2005) Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 23:3331–3342

    Article  PubMed  CAS  Google Scholar 

  40. Bonnefoi H, Potti A, Delorenzi M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8:1071–1078

    Article  PubMed  CAS  Google Scholar 

  41. Folgueira MA, Carraro DM, Brentani H et al (2005) Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 11:7434–7443

    Article  PubMed  CAS  Google Scholar 

  42. Hess KR, Anderson K, Symmans WF et al (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24:4236–4244

    Article  PubMed  CAS  Google Scholar 

  43. Iwao-Koizumi K, Matoba R, Ueno N et al (2005) Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 23:422–431

    Article  PubMed  CAS  Google Scholar 

  44. Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    Article  PubMed  CAS  Google Scholar 

  45. Bertucci F, Houlgatte R, Benziane A et al (2000) Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum Mol Genet 9:2981–2991

    Article  PubMed  CAS  Google Scholar 

  46. Bertucci F, Nasser V, Granjeaud S et al (2002) Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum Mol Genet 11:863–872

    Article  PubMed  CAS  Google Scholar 

  47. Specht K, Harbeck N, Smida J et al (2009) Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Res Treat 118:45–56

    Article  PubMed  CAS  Google Scholar 

  48. Campone M, Campion L, Roche H et al (2008) Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen. Breast Cancer Res Treat 109:491–501

    Article  PubMed  CAS  Google Scholar 

  49. Pawitan Y, Bjohle J, Amler L et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964

    Article  PubMed  CAS  Google Scholar 

  50. Jezequel P, Campone M, Roche H et al (2009) A 38-gene expression signature to predict metastasis risk in node-positive breast cancer after systemic adjuvant chemotherapy: a genomic substudy of PACS01 clinical trial. Breast Cancer Res Treat 116:509–520

    Article  PubMed  CAS  Google Scholar 

  51. Bertucci F, Borie N, Ginestier C et al (2004) Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene 23:2564–2575

    Article  PubMed  CAS  Google Scholar 

  52. Vey N, Mozziconacci MJ, Groulet-Martinec A et al (2004) Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. Oncogene 23:9381–9391

    Article  PubMed  CAS  Google Scholar 

  53. Bertucci F, Orsetti B, Negre V et al (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 27:5359–5372

    Article  PubMed  CAS  Google Scholar 

  54. Kaplan EL, Meier PI (1958) Non-parametric estimation for incomplete observation. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  55. Cox DRI (1972) Regression models and life table. J R Stat Soc [B] 34:187–220

    Google Scholar 

  56. Todd JH, Dowle C, Williams MR et al (1987) Confirmation of a prognostic index in primary breast cancer. Br J Cancer 56:489–492

    Article  PubMed  CAS  Google Scholar 

  57. Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  58. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  59. West M, Blanchette C, Dressman H et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467

    Article  PubMed  CAS  Google Scholar 

  60. Bertucci F, Finetti P, Cervera N et al (2006) Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 66:4636–4644

    Article  PubMed  CAS  Google Scholar 

  61. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    Article  PubMed  CAS  Google Scholar 

  62. Dowsett M, Goldhirsch A, Hayes DF et al (2007) International Web-based consultation on priorities for translational breast cancer research. Breast Cancer Res 9:R81

    Article  PubMed  Google Scholar 

  63. Bonadonna G, Valagussa P, Moliterni A, Zambetti M, Brambilla CI (1995) Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N Engl J Med 332:901–906

    Article  PubMed  CAS  Google Scholar 

  64. Demicheli R, Miceli R, Brambilla C et al (1999) Comparative analysis of breast cancer recurrence risk for patients receiving or not receiving adjuvant cyclophosphamide, methotrexate, fluorouracil (CMF). Data supporting the occurrence of ‘cures’. Breast Cancer Res Treat 53:209–215

    Article  PubMed  CAS  Google Scholar 

  65. Bertucci F, Ferrero JM, Bachelot T et aI (2009) SA02 trial: a genomics-based prospective study of adjuvant chemotherapy in node-positive early breast cancer with “good-prognosis signature”. SABCS 2009

  66. Piccart-Gebhart MJI (2005) Moving away from the “one shoe fits all” strategy: the key to future progress in chemotherapy. J Clin Oncol 23:1611–1613

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to L. Xerri and C. Mawas for encouragements. We thank F. Bonnet, S. Mathoulin-Pélissier, V. Brouste for their technical assistance and S. Deraco for his help in data analysis. This study was supported in part by Inserm, Institut Paoli-Calmettes, and grants from Programme Hospitalier de Recherche Clinique 2001 (PHRC N° 24-01 FB) and 2003 (N° 24-01 FB), Ligue Nationale Contre le Cancer (label DB), Association pour la Recherche sur le Cancer, Fédération Nationale des Centres de Lutte Contre le Cancer and Institut National du Cancer (ACI2004, PL2006, recherche translationnelle). The Biological Resource Centres in Oncology at Institut Paoli-Calmettes and Centre Léon Bérard were supported by grants “Tumorothèques” from the French Ministry of Health and INCa, by grants “Collections 2003” from Inserm and the French Ministry of Research, and by grants “CEBS 2006” from the Agence Nationale de la Recherche (ANR).

Conflict of interest

Ipsogen employees: N Borie, JM Le Doussal, S Debono, A Martinec, F Hermitte, V Fert. Ipsogen shareholders: S Debono, F Hermitte, V Fert. The other authors declare they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bertucci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2010_1003_MOESM1_ESM.tif

Supplementary Fig. 1: Kaplan–Meier MFS for patients treated with adjuvant anthracycline-based chemotherapy. a MFS for all 498 patients. bd MFS in the “good-prognosis group” or the “poor-prognosis group” defined using the genomic predictor; c MFS for all 498 patients; cMFS for 417 patients with N+ cancer; d MFS for 80 patients with N− cancer. HR means hazard ratio for metastasis in the “poor-prognosis group” as compared to the “good-prognosis group.” (TIFF 492 kb)

Supplementary material 2 (DOC 31 kb)

Supplementary material 3 (XLS 124 kb)

Supplementary material 4 (DOC 52 kb)

Supplementary material 5 (XLS 158 kb)

Supplementary material 6 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertucci, F., Borie, N., Roche, H. et al. Gene expression profile predicts outcome after anthracycline-based adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 127, 363–373 (2011). https://doi.org/10.1007/s10549-010-1003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1003-z

Keywords

Navigation