Breast Cancer Research and Treatment

, Volume 127, Issue 1, pp 69–80 | Cite as

Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer

  • Yingchun Zhao
  • Caishu Deng
  • Jiarui Wang
  • Jing Xiao
  • Zoran Gatalica
  • Robert R. Recker
  • Gary Guishan Xiao
Preclinical study


In order to understand how microRNAs (miRNAs) regulate breast cancer tumorigenesis, a miRNA expression microarray screening was performed using RNA from formalin-fixed paraffin-embedded (FFPE) breast tissues, which included benign (n = 13), ductal carcinoma in situ (DCIS) (n = 16), and invasive ductal carcinoma (IDC) (n = 15). Twenty-five differentially expressed miRNAs (P < 0.01) were identified, of which let-7 family miRNAs were down-regulated in human breast cancer tissues at stages of DCIS and IDC compared to benign stage. We further found that there was an inverse correlation between ER-α expression and several members of let-7 family in the FFPE tissues. Next, we performed bioinformatics analysis and found that let-7 miRNA sequences match sequence in the 3′-UTR of estrogen receptor alpha (ER-α), suggesting ER-α may be a target of let-7, which was further confirmed by a number of experimental assays, including luciferase assay, protein expression, and mRNA expression. Overexpression of let-7 miRNAs in ER-positive breast cancer MCF7 cell line negatively affected ER-α activity. As expected, dampening of the ER-α signaling by let-7 miRNAs inhibited cell proliferation, and subsequently triggered the cell apoptotic process in MCF7 cells. In conclusion, our findings indicate a new regulatory mechanism of let-7 miRNAs in ER-α mediated cellular malignant growth of breast cancer.


Let-7 family microRNAs Breast cancer FFPE Estrogen receptor-α signaling 



Analysis of variance


Breast tumor-initiating cells


Ductal carcinoma in situ


Dimethyl sulfoxide




Estrogen receptor


ER alpha


Estrogen response element


Fetal bovine serum


Formalin-fixed paraffin-embedded


Invasive ductal carcinoma




3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide


3′-Untranslated region



We thank Dr. Zhaoyi Wang, Dr. Xintian Zhang, and Dr. Lianguo Kang for their technical help and fruitful discussion and Dr. Xianming Chen, Dr. Aiyu Gong, and Dr. Guoku Hu for their help with plasmid construct and luciferase assay. This article was supported by Bone Biology Program of the Cancer, Smoking Related Disease Research Program, and the Nebraska Tobacco Settlement Biomedical Research Program (LB692, LB595, and LB506 to G. G. Xiao).

Supplementary material

10549_2010_972_MOESM1_ESM.xls (24 kb)
Supplementary material 1 (XLS 24 kb)
10549_2010_972_MOESM2_ESM.doc (250 kb)
Supplementary material 2 (DOC 250 kb)


  1. 1.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ (2009) MicroRNAs as novel biomarkers for breast cancer. J Oncol 2009:950201PubMedGoogle Scholar
  2. 2.
    Weihua Z, Andersson S, Cheng G, Simpson ER, Warner M, Gustafsson JA (2003) Update on estrogen signaling. FEBS Lett 546:17–24PubMedCrossRefGoogle Scholar
  3. 3.
    Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492PubMedCrossRefGoogle Scholar
  4. 4.
    Ng EK, Wong CL, Ma ES, Kwong A (2009) MicroRNAs as new players for diagnosis, prognosis, and therapeutic targets in breast cancer. J Oncol 2009:305420PubMedGoogle Scholar
  5. 5.
    Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–1147PubMedCrossRefGoogle Scholar
  6. 6.
    Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H (2008) miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68:5004–5008PubMedCrossRefGoogle Scholar
  7. 7.
    Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–8201PubMedCrossRefGoogle Scholar
  8. 8.
    Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282:1479–1486PubMedCrossRefGoogle Scholar
  9. 9.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedCrossRefGoogle Scholar
  10. 10.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046PubMedCrossRefGoogle Scholar
  11. 11.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123PubMedCrossRefGoogle Scholar
  12. 12.
    Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 8:321–330PubMedCrossRefGoogle Scholar
  13. 13.
    Gunaratne PH (2009) Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther 4:168–177PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  15. 15.
    Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030PubMedCrossRefGoogle Scholar
  16. 16.
    Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579PubMedCrossRefGoogle Scholar
  17. 17.
    Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748PubMedCrossRefGoogle Scholar
  18. 18.
    Michael MZ, O’Connor SM, Van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  19. 19.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  20. 20.
    Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih I, Zhang Y, Wood W III, Becker KG, Morin PJ (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 3:e2436PubMedCrossRefGoogle Scholar
  21. 21.
    Feherty P, Farrer-Brown G, Kellie AE (1971) Oestradiol receptors in carcinoma and benign disease of the breast: an in vitro assay. Br J Cancer 25:697–710PubMedCrossRefGoogle Scholar
  22. 22.
    Khan SA, Rogers MA, Obando JA, Tamsen A (1994) Estrogen receptor expression of benign breast epithelium and its association with breast cancer. Cancer Res 54:993–997PubMedGoogle Scholar
  23. 23.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  24. 24.
    Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM (2009) MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 183:1617–1624PubMedCrossRefGoogle Scholar
  25. 25.
    Addis MF, Tanca A, Pagnozzi D, Crobu S, Fanciulli G, Cossu-Rocca P, Uzzau S (2009) Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues. Proteomics 9:3815–3823PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang H, Cao R, Lee WN, Deng C, Zhao Y, Lappe J, Recker R, Yen Y, Wang Q, Tsai MY, Go VL, Xiao GG (2010) Inhibition of protein phosphorylation in MIA pancreatic cancer cells: confluence of metabolic and signaling pathways. J Proteome Res 9:980–989PubMedCrossRefGoogle Scholar
  27. 27.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359PubMedCrossRefGoogle Scholar
  29. 29.
    Wang S, Bian C, Yang Z, Bo Y, Li J, Zeng L, Zhou H, Zhao RC (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34:1461–1466PubMedGoogle Scholar
  30. 30.
    Vranic S, Tawfik O, Palazzo J, Bilalovic N, Eyzaguirre E, Lee LM, Adegboyega P, Hagenkord J, Gatalica Z (2010) EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Mod Pathol 23:644–653PubMedCrossRefGoogle Scholar
  31. 31.
    Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24PubMedCrossRefGoogle Scholar
  32. 32.
    Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214PubMedCrossRefGoogle Scholar
  33. 33.
    Oxelmark E, Roth JM, Brooks PC, Braunstein SE, Schneider RJ, Garabedian MJ (2006) The cochaperone p23 differentially regulates estrogen receptor target genes and promotes tumor cell adhesion and invasion. Mol Cell Biol 26:5205–5213PubMedCrossRefGoogle Scholar
  34. 34.
    Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18:549–557PubMedCrossRefGoogle Scholar
  35. 35.
    Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164:35–42PubMedCrossRefGoogle Scholar
  36. 36.
    Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, Sepulveda AR, Xu X (2009) MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol 2:519–527PubMedGoogle Scholar
  37. 37.
    Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H (2008) An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn 10:513–519PubMedCrossRefGoogle Scholar
  39. 39.
    Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, McCready D, Wong D, Gerster K, Waldron L, Jurisica I, Penn LZ, Liu FF (2009) Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 89:597–606PubMedCrossRefGoogle Scholar
  40. 40.
    Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, Guenther SM, O’Leary JJ, Sheils O (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 7:36PubMedCrossRefGoogle Scholar
  41. 41.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360PubMedCrossRefGoogle Scholar
  42. 42.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  43. 43.
    Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620PubMedCrossRefGoogle Scholar
  44. 44.
    Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J (2009) The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA 106:15732–15737PubMedCrossRefGoogle Scholar
  45. 45.
    Leivonen SK, Makela R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, Enerly E, Aakula A, Hellstrom K, Sahlberg N, Kristensen VN, Borresen-Dale AL, Saviranta P, Perala M, Kallioniemi O (2009) Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28:3926–3936PubMedCrossRefGoogle Scholar
  46. 46.
    Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29:3783–3790PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283:31079–31086PubMedCrossRefGoogle Scholar
  48. 48.
    Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974PubMedCrossRefGoogle Scholar
  49. 49.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Yingchun Zhao
    • 1
  • Caishu Deng
    • 2
  • Jiarui Wang
    • 1
  • Jing Xiao
    • 1
  • Zoran Gatalica
    • 2
  • Robert R. Recker
    • 1
  • Gary Guishan Xiao
    • 1
  1. 1.Genomics & Functional Proteomics Laboratories, Osteoporosis Research CenterCreighton University Medical CenterOmahaUSA
  2. 2.Department of PathologyCreighton University Medical CenterOmahaUSA

Personalised recommendations