Breast Cancer Research and Treatment

, Volume 124, Issue 2, pp 543–549 | Cite as

Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer

  • Dmitri Pchejetski
  • Joao Nunes
  • Lysann Sauer
  • Jasmin Sidhu
  • Anand Sharma
  • Hector C. Keun
  • Jonathan Waxman
  • Justin Stebbing
Brief Report


Weight gain in women receiving chemotherapy for breast cancer is associated with a higher risk of recurrence. Using metabonomic profiling, we recently reported that plasma lactate and alanine were prognostic for weight gain in individuals with breast cancer receiving chemotherapy. The role of lipid second messengers has not been studied. We assessed serum levels of sphingosine-1-phosphate (S1P), a known secreted lipid second messenger with a role in cell growth, in sequential samples from post-menopausal women receiving standard chemotherapy for early breast cancer and correlated these with body mass measurements and metabonomic profiling. While serum S1P levels prior to treatment did not correlate with body weight changes or circulating alanine and lactate, S1P levels measured during therapy were inversely correlated with weight gain (P = 0.04), but not weight loss (P = 0.74) or no change in weight (P = 0.5), suggesting a role of dynamic circulating S1P in adipocyte growth. These data provide evidence for an association between serum S1P and weight gain during chemotherapy cycles in women with breast cancer. Lipid second messengers have a role in chemotherapy-induced weight gain in breast cancer.


Breast cancer Weight Chemotherapy Sphingosine-1-phosphate 



This study was supported by The Royal Society (Grant number P24841 to DP), The Prostate Cancer Charity (Grant number 110630 to DP), and Prostate UK (Grant number G2007/07 to DP). JS is supported by Ovarian Cancer Action.

Supplementary material

10549_2010_968_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
Supplementary material 2 (tiff 96 kb)
Supplementary material 2 (tiff 80 kb)


  1. 1.
    Rock CL, Flatt SW, Newman V, Caan BJ, Haan MN, Stefanick ML, Faerber S, Pierce JP (1999) Factors associated with weight gain in women after diagnosis of breast cancer. Women’s Healthy Eating and Living Study Group. J Am Diet Assoc 99(10):1212–1221CrossRefPubMedGoogle Scholar
  2. 2.
    Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, Blackwell K, Rimer BK (2001) Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 19(9):2381–2389PubMedGoogle Scholar
  3. 3.
    Dixon JK, Moritz DA, Baker FL (1978) Breast cancer and weight gain: an unexpected finding. Oncol Nurs Forum 5(3):5–7PubMedGoogle Scholar
  4. 4.
    Donegan WL, Hartz AJ, Rimm AA (1978) The association of body weight with recurrent cancer of the breast. Cancer 41(4):1590–1594CrossRefPubMedGoogle Scholar
  5. 5.
    Huntington MO (1985) Weight gain in patients receiving adjuvant chemotherapy for carcinoma of the breast. Cancer 56(3):472–474CrossRefPubMedGoogle Scholar
  6. 6.
    Goodwin PJ (2001) Weight gain in early-stage breast cancer: where do we go from here? J Clin Oncol 19(9):2367–2369PubMedGoogle Scholar
  7. 7.
    Chlebowski RT, Aiello E, McTiernan A (2002) Weight loss in breast cancer patient management. J Clin Oncol 20(4):1128–1143CrossRefPubMedGoogle Scholar
  8. 8.
    Kroenke CH, Chen WY, Rosner B, Holmes MD (2005) Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol 23(7):1370–1378CrossRefPubMedGoogle Scholar
  9. 9.
    Caan BJ, Emond JA, Natarajan L, Castillo A, Gunderson EP, Habel L, Jones L, Newman VA, Rock CL, Slattery ML et al (2006) Post-diagnosis weight gain and breast cancer recurrence in women with early stage breast cancer. Breast Cancer Res Treat 99(1):47–57CrossRefPubMedGoogle Scholar
  10. 10.
    Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, Mahabir S, Hortobagyi GN, Brewster AM (2008) Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol 26(25):4072–4077CrossRefPubMedGoogle Scholar
  11. 11.
    Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, Goodman MT, Giuliano AE, Karanja N, McAndrew P et al (2006) Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study. J Natl Cancer Inst 98(24):1767–1776CrossRefPubMedGoogle Scholar
  12. 12.
    Pierce JP, Stefanick ML, Flatt SW, Natarajan L, Sternfeld B, Madlensky L, Al-Delaimy WK, Thomson CA, Kealey S, Hajek R et al (2007) Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol 25(17):2345–2351CrossRefPubMedGoogle Scholar
  13. 13.
    Keun HC, Sidhu J, Pchejetski D, Lewis JS, Marconell H, Patterson M, Bloom SR, Amber V, Coombes RC, Stebbing J (2009) Serum molecular signatures of weight change during early breast cancer chemotherapy. Clin Cancer Res 15(21):6716–6723CrossRefPubMedGoogle Scholar
  14. 14.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604–616CrossRefPubMedGoogle Scholar
  15. 15.
    Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S (2006) Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 103(44):16394–16399CrossRefPubMedGoogle Scholar
  16. 16.
    Hla T (2003) Signaling and biological actions of sphingosine 1-phosphate. Pharmacol Res 47(5):401–407CrossRefPubMedGoogle Scholar
  17. 17.
    Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294(5548):1875–1878CrossRefPubMedGoogle Scholar
  18. 18.
    Payne SG, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate: dual messenger functions. FEBS Lett 531(1):54–57CrossRefPubMedGoogle Scholar
  19. 19.
    Xia P, Gamble JR, Rye KA, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA (1998) Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci USA 95(24):14196–14201CrossRefPubMedGoogle Scholar
  20. 20.
    Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J 17(11):1411–1421CrossRefPubMedGoogle Scholar
  21. 21.
    Sato K, Ishikawa K, Ui M, Okajima F (1999) Sphingosine 1-phosphate induces expression of early growth response-1 and fibroblast growth factor-2 through mechanism involving extracellular signal-regulated kinase in astroglial cells. Brain Res 74(1–2):182–189Google Scholar
  22. 22.
    Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M, Claxton DF, Yun JK (2008) Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 49(5):948–954CrossRefPubMedGoogle Scholar
  23. 23.
    French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63(18):5962–5969PubMedGoogle Scholar
  24. 24.
    Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112(1):41–52CrossRefPubMedGoogle Scholar
  25. 25.
    Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64(8):695–705CrossRefPubMedGoogle Scholar
  26. 26.
    Li J, Guan HY, Gong LY, Song LB, Zhang N, Wu J, Yuan J, Zheng YJ, Huang ZS, Li M (2008) Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin Cancer Res 14(21):6996–7003CrossRefPubMedGoogle Scholar
  27. 27.
    Li W, Yu CP, Xia JT, Zhang L, Weng GX, Zheng HQ, Kong QL, Hu LJ, Zeng MS, Zeng YX et al (2009) Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res 15(4):1393–1399CrossRefPubMedGoogle Scholar
  28. 28.
    English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. Faseb J 14(14):2255–2265CrossRefPubMedGoogle Scholar
  29. 29.
    Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigyi G, Igarashi Y et al (2000) Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96(10):3431–3438PubMedGoogle Scholar
  30. 30.
    Hanel P, Andreani P, Graler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. Faseb J 21(4):1202–1209CrossRefPubMedGoogle Scholar
  31. 31.
    Ohkawa R, Nakamura K, Okubo S, Hosogaya S, Ozaki Y, Tozuka M, Osima N, Yokota H, Ikeda H, Yatomi Y (2008) Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Ann Clin Biochem 45(Pt 4):356–363CrossRefPubMedGoogle Scholar
  32. 32.
    Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, Gleason LA, Nakajima N, Sabbadini RA (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 146(1):62–68CrossRefPubMedGoogle Scholar
  33. 33.
    Kawamori T, Osta W, Johnson KR, Pettus BJ, Bielawski J, Tanaka T, Wargovich MJ, Reddy BS, Hannun YA, Obeid LM et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. Faseb J 20(2):386–388PubMedGoogle Scholar
  34. 34.
    Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K et al (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 13(7):1185–1191PubMedGoogle Scholar
  35. 35.
    Boneva-Asiova Z, Boyanov MA (2008) Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals. Diabetes Obes Metab 10(11):1012–1018CrossRefPubMedGoogle Scholar
  36. 36.
    Edsall LC, Spiegel S (1999) Enzymatic measurement of sphingosine 1-phosphate. Anal Biochem 272(1):80–86CrossRefPubMedGoogle Scholar
  37. 37.
    Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissie J, Kohama T, Waxman J, Malavaud B, Cuvillier O (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7(7):1836–1845CrossRefPubMedGoogle Scholar
  38. 38.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  39. 39.
    Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, Mazerolles C, Rischmann P, Teissie J, Malavaud B et al (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65(24):11667–11675CrossRefPubMedGoogle Scholar
  40. 40.
    Pischon T, Nothlings U, Boeing H (2008) Obesity and cancer. Proc Nutrition Soc 67(2):128–145Google Scholar
  41. 41.
    Vona-Davis L, Rose DP (2009) Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev 20(3):193–201CrossRefPubMedGoogle Scholar
  42. 42.
    Takabe K, Paugh SW, Milstien S, Spiegel S (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60(2):181–195CrossRefPubMedGoogle Scholar
  43. 43.
    Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, Cuvillier O (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20(1):95–102CrossRefPubMedGoogle Scholar
  44. 44.
    Sauer L, Nunes J, Salunkhe V, Skalska L, Kohama T, Cuvillier O, Waxman J, Pchejetski D (2009) Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int J Cancer 125(11):2728–2736CrossRefPubMedGoogle Scholar
  45. 45.
    Guillermet-Guibert J, Davenne L, Pchejetski D, Saint-Laurent N, Brizuela L, Guilbeau-Frugier C, Delisle MB, Cuvillier O, Susini C, Bousquet C (2009) Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Ther 8(4):809–820CrossRefPubMedGoogle Scholar
  46. 46.
    Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb J 22(8):2629–2638CrossRefPubMedGoogle Scholar
  47. 47.
    Jun DJ, Lee JH, Choi BH, Koh TK, Ha DC, Jeong MW, Kim KT (2006) Sphingosine-1-phosphate modulates both lipolysis and leptin production in differentiated rat white adipocytes. Endocrinology 147(12):5835–5844CrossRefPubMedGoogle Scholar
  48. 48.
    Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37(1):187–198CrossRefPubMedGoogle Scholar
  49. 49.
    Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3):225–238CrossRefPubMedGoogle Scholar
  50. 50.
    Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, Pelletier J, Capra R, Gallo P, Izquierdo G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Eng J Med 362(5):402–415CrossRefGoogle Scholar
  51. 51.
    Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Eng J Med 362(5):387–401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Dmitri Pchejetski
    • 1
    • 3
  • Joao Nunes
    • 1
  • Lysann Sauer
    • 1
  • Jasmin Sidhu
    • 2
  • Anand Sharma
    • 2
  • Hector C. Keun
    • 2
  • Jonathan Waxman
    • 1
  • Justin Stebbing
    • 1
    • 4
  1. 1.Department of Surgery and CancerImperial CollegeLondonUK
  2. 2.Biomolecular Medicine, Department of Surgery and CancerImperial CollegeLondonUK
  3. 3.Department of Surgery and Cancer Imperial College London, Hammersmith HospitalLondonUK
  4. 4.Imperial College Healthcare NHS Trust, Charing Cross HospitalLondonUK

Personalised recommendations