Breast Cancer Research and Treatment

, Volume 126, Issue 3, pp 555–563 | Cite as

RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway

  • Xi-Xi Cao
  • Jing-Da Xu
  • Jia-Wen Xu
  • Xiao-Li Liu
  • Yuan-Yuan Cheng
  • Qing-Quan Li
  • Zu-De Xu
  • Xiu-Ping Liu
Preclinical study


We aimed to gain a mechanistic understanding of the role of RACK1 in breast carcinoma migration/metastasis. Migration assays were conducted in breast carcinoma cell lines. siRNA targeting RACK1 as well as the Rho kinase inhibitor were also applied. Immunoprecipitation and immunofluorescence were used to study the RACK1/RhoA interaction. GTP-Rho pull-down assays were performed to assess the activation of RhoA. We also conducted immunohistochemistry in 160 breast carcinoma samples. Experiments in vitro showed that RACK1 promotes migration via interaction with RhoA and activation of the RhoA/Rho kinase pathway. Immunohistochemistry in 160 samples revealed that RACK1 is strongly correlated with accepted tumor spread indicators and RhoA (all P < 0.05). Kaplan–Meier survival analysis indicated a correlation between higher RACK1 expression and shorter survival times (P < 0.001). RACK1 is a prognostic factor that promotes breast carcinoma migration/metastasis by interacting with RhoA and activating the RhoA/Rho kinase pathway.


RACK1 Breast carcinoma Metastasis Migration RhoA/Rho kinase 



The authors acknowledge grant supports received from National Nature Science Foundation of China (No. 30870972 and No. 30872971).

Supplementary material

10549_2010_955_MOESM1_ESM.ppt (11.7 mb)
Immunochemical analysis of clinical cases. Representative immunochemical staining of RACK1 and RhoA from 160 clinical cases is shown. (PPT 11948 kb)


  1. 1.
    McPherson K, Steel CM, Dixon JM (1994) ABC of breast diseases. Breast cancer epidemiology, risk factors and genetics. BMJ 309:1003–1006PubMedGoogle Scholar
  2. 2.
    Tjan-Heijnen VCG, Bult P, de Widt-Levert LM, Ruers TJ, Beex LVAM (2001) Micro-metastases in axillary lymph nodes: an increasing classification and treatment dilemma in breast cancer due to the introduction of the sentinel lymph node procedure. Breast Cancer Res Treat 70:81–88PubMedCrossRefGoogle Scholar
  3. 3.
    Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP (2009) RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0657-x (Epub ahead of print)
  4. 4.
    Cao XX, Xu JD, Liu XL, Xu JW, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP (2009) RACK1: a superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer. doi: 10.1002/ijc.25120 (Epub ahead of print)
  5. 5.
    Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843PubMedCrossRefGoogle Scholar
  6. 6.
    McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ (2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62:1261–1273PubMedCrossRefGoogle Scholar
  7. 7.
    Kubota T, Yokosawa N, Yokota S, Fujii N (2002) Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76:12676–12682PubMedCrossRefGoogle Scholar
  8. 8.
    Hermanto U, Zong CS, Li W, Wang LH (2002) RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 22:2345–2365PubMedCrossRefGoogle Scholar
  9. 9.
    Wu Di, Asiedu Michael, Wei Qize (2009) MyoGEF regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene 28:2219–2230PubMedCrossRefGoogle Scholar
  10. 10.
    Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, Lu H, Pritchard LL, Vannier JP, Malvy C, Soria C, Li H (2005) Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11:267–274PubMedCrossRefGoogle Scholar
  11. 11.
    Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64:8694–8701PubMedCrossRefGoogle Scholar
  12. 12.
    van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60:5832–5838PubMedGoogle Scholar
  13. 13.
    Davies R, Budworth J, Riley J, Snowden R, Gescher A, Gant TW (1996) Regulation of P-glycoprotein 1 and 2 gene expression and protein activity in two MCF7/ADR cell line subclones. Br J Cancer 73:307–315PubMedCrossRefGoogle Scholar
  14. 14.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) Reporting recommendations for tumor marker prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235PubMedCrossRefGoogle Scholar
  15. 15.
    Boettner B, Van Aelst L (2002) The role of Rho GTPases in disease development. Gene 286:155–174PubMedCrossRefGoogle Scholar
  16. 16.
    Buensuceso CS, Woodside D, Huff JL, Plopper GE, O’Toole TE (2001) The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 114:1691–1698PubMedGoogle Scholar
  17. 17.
    Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20:6339–6347PubMedCrossRefGoogle Scholar
  18. 18.
    Sklan EH, Podoly E, Soreq H (2006) RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 78:117–134PubMedCrossRefGoogle Scholar
  19. 19.
    Imai Y, Suzuki Y, Tohyama M, Wanaka A, Takagi T (1994) Cloning and expression of a neural differentiation-associated gene, p205, in the embryonal carcinoma cell line P19 and in the developing mouse. Brain Res Mol Brain Res 24:313–319PubMedCrossRefGoogle Scholar
  20. 20.
    Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ (2000) RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 14:2549–2558PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Tsujinoue H, Nakatani T, Shibuya M, Fukui H (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418PubMedGoogle Scholar
  22. 22.
    Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M, Pestell RG (2001) Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways. Mol Med 7:816–830PubMedGoogle Scholar
  23. 23.
    Denoyelle C, Vasse M, Körner M, Mishal Z, Ganné F, Vannier JP, Soria J, Soria C (2001) Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer celllines: an in vitro study. Carcinogenesis 22:1139–1148PubMedCrossRefGoogle Scholar
  24. 24.
    Bourguignon LY (2001) CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 6:287–297PubMedCrossRefGoogle Scholar
  25. 25.
    Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedCrossRefGoogle Scholar
  26. 26.
    Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62PubMedCrossRefGoogle Scholar
  27. 27.
    Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721PubMedCrossRefGoogle Scholar
  28. 28.
    Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072PubMedCrossRefGoogle Scholar
  29. 29.
    Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76PubMedCrossRefGoogle Scholar
  30. 30.
    Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Mastuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesion enhanced by Rho-kinase. Science 275:1308–1311PubMedCrossRefGoogle Scholar
  31. 31.
    Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinase. Mol Pharmacol 57:976–983PubMedGoogle Scholar
  32. 32.
    Sahai E, Ishizaki T, Narumiya S, Treisman R (1999) Transformation mediated by Rho requires activity of ROCK kinases. Curr Biol 9:136–145PubMedCrossRefGoogle Scholar
  33. 33.
    Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S (1999) An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med 5:221–225PubMedCrossRefGoogle Scholar
  34. 34.
    Del Re DP, Miyamoto S, Brown JH (2008) Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J Biol Chem 283:35622–35629PubMedCrossRefGoogle Scholar
  35. 35.
    Nakaya Y, Sukowati EW, Wu Y, Sheng G (2008) RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10:765–775PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Xi-Xi Cao
    • 1
  • Jing-Da Xu
    • 1
  • Jia-Wen Xu
    • 1
  • Xiao-Li Liu
    • 1
  • Yuan-Yuan Cheng
    • 1
  • Qing-Quan Li
    • 1
  • Zu-De Xu
    • 1
  • Xiu-Ping Liu
    • 1
  1. 1.Department of Pathology, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations