Breast Cancer Research and Treatment

, Volume 125, Issue 3, pp 659–669 | Cite as

Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells

  • Stephen Hiscox
  • Peter Barnfather
  • Edd Hayes
  • Pamela Bramble
  • James Christensen
  • Robert I. Nicholson
  • Peter Barrett-Lee
Preclinical study


Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell–matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC50 for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0–1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment.


Focal adhesion kinase Endocrine resistance Migration Adhesion Breast cancer Tamoxifen Fulvestrant 



The authors wish to thank the In The Pink and Tenovus charities and the William Morgan Thomas bequest fund for supporting this study.


  1. 1.
    van Nimwegen MJ, van de Water B (2007) Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 73:597–609CrossRefPubMedGoogle Scholar
  2. 2.
    Bernard-Trifilo JA, Lim ST, Hou S, Schlaepfer DD, Ilic D (2006) Analyzing FAK and Pyk2 in early integrin signaling events. Curr Protoc Cell Biol Chapter 14: Unit 14.7Google Scholar
  3. 3.
    Rozengurt E (2007) Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213:589–602CrossRefPubMedGoogle Scholar
  4. 4.
    D’Alessio S, Blasi F (2009) The urokinase receptor as an entertainer of signal transduction. Front Biosci 14:4575–4587CrossRefPubMedGoogle Scholar
  5. 5.
    Rothhut B, Ghoneim C, Antonicelli F, Soula-Rothhut M (2007) Epidermal growth factor stimulates matrix metalloproteinase-9 expression and invasion in human follicular thyroid carcinoma cells through Focal adhesion kinase. Biochimie 89:613–624CrossRefPubMedGoogle Scholar
  6. 6.
    Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R (2007) Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 97:368–377CrossRefPubMedGoogle Scholar
  7. 7.
    Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134:793–799CrossRefPubMedGoogle Scholar
  8. 8.
    Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767CrossRefPubMedGoogle Scholar
  9. 9.
    van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65:4698–4706CrossRefPubMedGoogle Scholar
  10. 10.
    Watermann DO, Gabriel B, Jager M, Orlowska-Volk M, Hasenburg A, zur Hausen A, Gitsch G, Stickeler E (2005) Specific induction of pp125 focal adhesion kinase in human breast cancer. Br J Cancer 93:694–698CrossRefPubMedGoogle Scholar
  11. 11.
    Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, Cance WG (2003) Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res 9:215–222PubMedGoogle Scholar
  12. 12.
    Aronsohn MS, Brown HM, Hauptman G, Kornberg LJ (2003) Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope 113:1944–1948CrossRefPubMedGoogle Scholar
  13. 13.
    Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC, Geradts J, Iacocca M, Cowan D, Little D, Craven RJ, Cance W (2005) High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol 18:1289–1294CrossRefPubMedGoogle Scholar
  14. 14.
    Madan R, Smolkin MB, Cocker R, Fayyad R, Oktay MH (2006) Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma. Hum Pathol 37:9–15CrossRefPubMedGoogle Scholar
  15. 15.
    Nicholson RI, Hutcheson IR, Britton D, Knowlden JM, Jones HE, Harper ME, Hiscox SE, Barrow D, Gee JM (2005) Growth factor signalling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies. J Steroid Biochem Mol Biol 93:257–262CrossRefPubMedGoogle Scholar
  16. 16.
    Nicholson RI, Gee JM, Knowlden J, McClelland R, Madden TA, Barrow D, Hutcheson I (2003) The biology of antihormone failure in breast cancer. Breast Cancer Res Treat 80(Suppl 1):S29–S34 (discussion S5)CrossRefPubMedGoogle Scholar
  17. 17.
    Nicolini A, Giardino R, Carpi A, Ferrari P, Anselmi L, Colosimo S, Conte M, Fini M, Giavaresi G, Berti P, Miccoli P (2006) Metastatic breast cancer: an updating. Biomed Pharmacother 60:548–556CrossRefPubMedGoogle Scholar
  18. 18.
    Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044CrossRefPubMedGoogle Scholar
  19. 19.
    Hiscox S, Jordan NJ, Jiang W, Harper M, McClelland R, Smith C, Nicholson RI (2006) Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour-stroma interactions. Endocr Relat Cancer 13:1085–1099CrossRefPubMedGoogle Scholar
  20. 20.
    Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, Barrow D, Nicholson RI (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118:290–301CrossRefPubMedGoogle Scholar
  21. 21.
    Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97:263–274CrossRefPubMedGoogle Scholar
  22. 22.
    Hiscox S, Jordan NJ, Morgan L, Green TP, Nicholson RI (2007) Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin Exp Metastasis 24:157–167CrossRefPubMedGoogle Scholar
  23. 23.
    Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282:14845–14852CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura K, Yano H, Schaefer E, Sabe H (2001) Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene 20:2626–2635CrossRefPubMedGoogle Scholar
  25. 25.
    Hiscox S, Jordan NJ, Smith C, James M, Morgan L, Taylor KM, Green TP, Nicholson RI (2008) Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res Treat 115:57–67CrossRefPubMedGoogle Scholar
  26. 26.
    Wu W, Graves LM, Gill GN, Parsons SJ, Samet JM (2002) Src-dependent phosphorylation of the epidermal growth factor receptor on tyrosine 845 is required for zinc-induced Ras activation. J Biol Chem 277:24252–24257CrossRefPubMedGoogle Scholar
  27. 27.
    Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356CrossRefPubMedGoogle Scholar
  28. 28.
    McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, Gee JM, Nicholson RI (2001) Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182, 780 (Faslodex). Endocrinology 142:2776–2788CrossRefPubMedGoogle Scholar
  29. 29.
    Hiscox S, Morgan L, Barrow D, Dutkowskil C, Wakeling A, Nicholson RI (2004) Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (‘Iressa’, ZD1839). Clin Exp Metastasis 21:201–212CrossRefPubMedGoogle Scholar
  30. 30.
    Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J (2006) Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 341:73–81CrossRefPubMedGoogle Scholar
  31. 31.
    Chen J, Lu Y, Meng S, Han MH, Lin C, Wang X (2009) Alpha- and gamma-Protocadherins negatively regulate PYK2. J Biol Chem 284:2880–2890CrossRefPubMedGoogle Scholar
  32. 32.
    Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688PubMedGoogle Scholar
  33. 33.
    Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL (1994) Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol Biol Cell 5:413–421PubMedGoogle Scholar
  34. 34.
    Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954–963PubMedGoogle Scholar
  35. 35.
    Gutteridge E, Agrawal A, Nicholson R, Leung Cheung K, Robertson J, Gee J (2009) The effects of gefitinib in tamoxifen-resistant and hormone-insensitive breast cancer: a phase II study. Int J Cancer 126(8):1806–1816Google Scholar
  36. 36.
    Ghayad SE, Vendrell JA, Larbi SB, Dumontet C, Bieche I, Cohen PA (2009) Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways. Int J Cancer 126:545–562CrossRefGoogle Scholar
  37. 37.
    Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf CA III, Sawyer TK, Frame MC (2005) Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65:1335–1342CrossRefPubMedGoogle Scholar
  38. 38.
    Chan KT, Cortesio CL, Huttenlocher A (2009) FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 185:357–370CrossRefPubMedGoogle Scholar
  39. 39.
    Tomar A, Lim ST, Lim Y, Schlaepfer DD (2009) A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 122:1852–1862CrossRefPubMedGoogle Scholar
  40. 40.
    Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256CrossRefPubMedGoogle Scholar
  41. 41.
    Tilghman RW, Slack-Davis JK, Sergina N, Martin KH, Iwanicki M, Hershey ED, Beggs HE, Reichardt LF, Parsons JT (2005) Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 118:2613–2623CrossRefPubMedGoogle Scholar
  42. 42.
    Zhao Y, Planas-Silva MD (2009) Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett 275:204–212CrossRefPubMedGoogle Scholar
  43. 43.
    Schrecengost RS, Riggins RB, Thomas KS, Guerrero MS, Bouton AH (2007) Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res 67:6174–6182CrossRefPubMedGoogle Scholar
  44. 44.
    Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA (2000) Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19:5606–5613CrossRefPubMedGoogle Scholar
  45. 45.
    Jia Z, Barbier L, Stuart H, Amraei M, Pelech S, Dennis JW, Metalnikov P, O’Donnell P, Nabi IR (2005) Tumor cell pseudopodial protrusions: localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem 280:30564–30573CrossRefPubMedGoogle Scholar
  46. 46.
    Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C, Conigliaro A, Fantoni A, Amicone L, Tripodi M (2008) TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 314:143–152CrossRefPubMedGoogle Scholar
  47. 47.
    Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F, Jove R (2008) SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 7:1185–1194CrossRefPubMedGoogle Scholar
  48. 48.
    Wang ZG, Fukazawa T, Nishikawa T, Watanabe N, Sakurama K, Motoki T, Takaoka M, Hatakeyama S, Omori O, Ohara T, Tanabe S, Fujiwara Y, Shirakawa Y, Yamatsuji T, Tanaka N, Naomoto Y (2008) TAE226, a dual inhibitor for FAK and IGF-IR, has inhibitory effects on mTOR signaling in esophageal cancer cells. Oncol Rep 20:1473–1477PubMedGoogle Scholar
  49. 49.
    Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68CrossRefPubMedGoogle Scholar
  50. 50.
    McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer: a new therapeutic opportunity. Nat Rev Cancer 5:505–515CrossRefPubMedGoogle Scholar
  51. 51.
    Cowell LN, Graham JD, Bouton AH, Clarke CL, O’Neill GM (2006) Tamoxifen treatment promotes phosphorylation of the adhesion molecules, p130Cas/BCAR1, FAK and Src, via an adhesion-dependent pathway. Oncogene 25:7597–7607CrossRefPubMedGoogle Scholar
  52. 52.
    Bartholomew PJ, Vinci JM, DePasquale JA (1998) Decreased tyrosine phosphorylation of focal adhesion kinase after estradiol treatment of MCF-7 human breast carcinoma cells. J Steroid Biochem Mol Biol 67:241–249CrossRefPubMedGoogle Scholar
  53. 53.
    Chen Y, Guggisberg N, Jorda M, Gonzalez-Angulo A, Hennessy B, Mills GB, Tan CK, Slingerland JM (2009) Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin Cancer Res 15:3396–3405CrossRefPubMedGoogle Scholar
  54. 54.
    Morgan L, Gee J, Pumford S, Farrow L, Finlay P, Robertson J, Ellis IO, Kawakatsu H, Nicholson RI, Hiscox S (2009) Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol Ther 8:41–49Google Scholar
  55. 55.
    Nicholson RI, Hutcheson IR, Hiscox SE, Knowlden JM, Giles M, Barrow D, Gee JMW (2005) Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens: the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer. Endocr Relat Cancer 12:S29–36CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Stephen Hiscox
    • 1
  • Peter Barnfather
    • 2
  • Edd Hayes
    • 1
  • Pamela Bramble
    • 3
  • James Christensen
    • 4
  • Robert I. Nicholson
    • 1
  • Peter Barrett-Lee
    • 5
  1. 1.Welsh School of PharmacyCardiff UniversityCathays Park, CardiffUK
  2. 2.School of BiosciencesCardiff UniversityWalesUK
  3. 3.Pfizer OncologyTadworth, SurreyUK
  4. 4.Pfizer PGRDSan DiegoUSA
  5. 5.Velindre Cancer CentreCardiff, WalesUK

Personalised recommendations