Skip to main content

Advertisement

Log in

Alcohol consumption and breast tumor mitochondrial DNA mutations

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) mutations are frequent in breast tumors, but the etiology of these mutations is unknown. We hypothesized that these mutations are associated with exposures that affect oxidative stress such as alcohol metabolism. Using archived tumor blocks from incident breast cancer cases in a case control study, the Western New York Exposures and Breast Cancer (WEB) study, analysis of mtDNA mutations was conducted on 128 breast cancer cases selected based on extremes of alcohol intake. Temporal temperature gradient gel electrophoresis (TTGE) was used to screen the entire mtDNA genome and sequencing was completed for all TTGE positive samples. Case–case comparisons were completed using unconditional logistic regression to determine the relative prevalence of the mutations by exposures including alcohol consumption, manganese superoxide dismutase (MnSOD) genotype, nutrient intake related to oxidative stress and established breast cancer risk factors. Somatic mtDNA mutations were found in 60 of the 128 tumors examined. There were no differences in the prevalence of mtDNA mutations by alcohol consumption, MnSOD genotype or dietary intake. The likelihood of mtDNA mutations was reduced among those with a positive family history for breast cancer (OR = 0.33, CI = 0.12–0.92), among postmenopausal women who used hormone replacement therapy (OR = 0.46, CI = 0.19–1.08, P = 0.08) and was increased for ER negative tumors (OR = 2.05, CI = 0.95–4.43, P = 0.07). Consistent with previous studies, we found that mtDNA mutations are a frequent occurrence in breast tumors. An understanding of the etiology of mtDNA mutations may provide insight into breast carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:1476–1488

    Article  Google Scholar 

  2. Tan DJ, Bai RK, Wong LJ (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–976

    CAS  PubMed  Google Scholar 

  3. Parrella P, Xiao Y, Fliss M et al (2001) Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 61:7623–7626

    CAS  PubMed  Google Scholar 

  4. Zhu W, Qin W, Bradley P et al (2005) Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26:145–152

    Article  PubMed  Google Scholar 

  5. Ishii H, Kurose I, Kato S (1997) Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol 12:S272–S282

    Article  CAS  PubMed  Google Scholar 

  6. Lubec G (1996) The hydroxyl radical: from chemistry to human disease. J Investig Med 44:324–346

    CAS  PubMed  Google Scholar 

  7. Kumaraguruparan R, Kabalimoorthy J, Nagini S (2005) Correlation of tissue lipid peroxidation and antioxidants with clinical stage and menopausal status in patients with adenocarcinoma of the breast. Clin Biochem 38:154–158

    Article  CAS  PubMed  Google Scholar 

  8. Soliman AS, Vulimiri SV, Kleiner HE et al (2004) High levels of oxidative DNA damage in lymphocyte DNA of premenopausal breast cancer patients from Egypt. Int J Environ Health Res 14:121–134

    Article  CAS  PubMed  Google Scholar 

  9. Tas F, Hansel H, Belce A et al (2005) Oxidative stress in breast cancer. Med Oncol 22:11–15

    Article  CAS  PubMed  Google Scholar 

  10. Yeh CC, Hou MF, Tsai SM et al (2005) Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer. Clin Chim Acta 361:104–111

    Article  CAS  PubMed  Google Scholar 

  11. Lieber CS (1997) Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Adv Pharmacol 38:601–628

    Article  CAS  PubMed  Google Scholar 

  12. Rosenblum JS, Gilula NB, Lerner RA (1996) On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci USA 93:4471–4473

    Article  CAS  PubMed  Google Scholar 

  13. Bag A, Bag N (2008) Target sequence polymorphism of human manganese superoxide dismutase gene and its association with cancer risk: a review. Cancer Epidemiol Biomarkers Prev 17:3298–3305

    Article  CAS  PubMed  Google Scholar 

  14. Tseng LM, Yin PH, Chi CW et al (2006) Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer 45:629–638

    Article  CAS  PubMed  Google Scholar 

  15. Bonner MR, Han D, Nie J et al (2005) Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol Biomarkers Prev 14:53–60

    CAS  PubMed  Google Scholar 

  16. Block G, Hartman AM, Dresser CM et al (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124:453–469

    CAS  PubMed  Google Scholar 

  17. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S discussion 1229S–1231S

    CAS  PubMed  Google Scholar 

  18. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  19. Lum A, Le Marchand L (1998) A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol Biomarkers Prev 7:719–724

    CAS  PubMed  Google Scholar 

  20. Wang X, Myers A, Saiki RK et al (2002) Development and evaluation of a PCR-based, line probe assay for the detection of 58 alleles in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Clin Chem 48:1121–1123

    CAS  PubMed  Google Scholar 

  21. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Turner A, Little J et al (2002) Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet 111:573–574

    Article  PubMed  Google Scholar 

  23. Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122:2049–2063

    Article  CAS  PubMed  Google Scholar 

  24. Sugano T, Handler JA, Yoshihara H et al (1990) Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver. J Biol Chem 265:21549–21553

    CAS  PubMed  Google Scholar 

  25. Cunningham CC, Coleman WB, Spach PI (1990) The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol Alcohol 25:127–136

    CAS  PubMed  Google Scholar 

  26. Suzuki M, Toyooka S, Miyajima K et al (2003) Alterations in the mitochondrial displacement loop in lung cancers. Clin Cancer Res 9:5636–5641

    CAS  PubMed  Google Scholar 

  27. Ambrosone CB, Freudenheim JL, Thompson PA et al (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59:602–606

    CAS  PubMed  Google Scholar 

  28. Bergman M, Ahnstrom M, Palmeback Wegman P et al (2005) Polymorphism in the manganese superoxide dismutase (MnSOD) gene and risk of breast cancer in young women. J Cancer Res Clin Oncol 131:439–444

    Article  CAS  PubMed  Google Scholar 

  29. Egan KM, Thompson PA, Titus-Ernstoff L et al (2003) MnSOD polymorphism and breast cancer in a population-based case-control study. Cancer Lett 199:27–33

    Article  CAS  PubMed  Google Scholar 

  30. Mitrunen K, Sillanpaa P, Kataja V et al (2001) Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis 22:827–829

    Article  CAS  PubMed  Google Scholar 

  31. Slanger TE, Chang-Claude J, Wang-Gohrke S (2006) Manganese superoxide dismutase Ala-9Val polymorphism, environmental modifiers, and risk of breast cancer in a German population. Cancer Causes Control 17:1025–1031

    Article  PubMed  Google Scholar 

  32. Russell M, Marshall JR, Trevisan M et al (1997) Test-retest reliability of the cognitive lifetime drinking history. Am J Epidemiol 146:975–981

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Department of Defense grants number DAMD 170310446 and 170010417 and the National Institutes of Health grants number RO1CA092040, P50AA09802 and R25CA114101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Platek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platek, M.E., Shields, P.G., Tan, D. et al. Alcohol consumption and breast tumor mitochondrial DNA mutations. Breast Cancer Res Treat 121, 453–460 (2010). https://doi.org/10.1007/s10549-009-0587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0587-7

Keywords

Navigation