Breast Cancer Research and Treatment

, Volume 120, Issue 3, pp 663–669 | Cite as

The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer

  • Chunhui Yi
  • Lina Mu
  • Irene A. Rigault de la Longrais
  • Olga Sochirca
  • Riccardo Arisio
  • Herbert Yu
  • Aaron E. Hoffman
  • Yong Zhu
  • Dionyssios Katsaro


Mounting evidence suggests that neuronal PAS domain protein 2 (NPAS2) and other circadian genes are involved in tumorigenesis and tumor growth, possibly through their control of cancer-related biologic pathways. A missense polymorphism in NPAS2 (Ala394Thr) has been shown to be associated with risk of human tumors including breast cancer. The current study further examined the prognostic significance of NPAS2 in breast cancer by genotyping the Ala394Thr polymorphism and measuring NPAS2 expression. DNA extracted from 348 breast cancer tissue samples was analyzed for NPAS2 genotype using the TaqMan allelic discrimination assay. Of these, 287 also had total RNA available for use in real-time PCR assays to determine NPAS2 expression. NPAS2 genotypes and expression levels were analyzed for associations with prognostic outcomes, as well as correlations with clinical characteristics. A high level of NPAS2 expression was strongly associated with improved disease free survival (AHR = 0.43, 95% CI: 0.21–0.86, P trend = 0.022) and overall survival (AHR = 0.42, 95% CI: 0.19–0.96, P trend = 0.036). In addition, there was a borderline, but nonsignificant association between the NPAS2 genotype corresponding to Thr394Thr and disease free survival (AHR = 1.82, 95% CI: 0.96–3.46). The Ala/Ala, Ala/Thr, and Thr/Thr genotypes were also differentially distributed by tumor severity, as measured by TNM classification (χ 2 (6df, N = 344) = 14.96, P = 0.020). These findings provide the first evidence suggesting prognostic significance of the circadian gene NPAS2 in breast cancer.


Circadian gene NPAS2 Breast caner Survival 



This work was supported by the US National Institutes of Health (grant CA122676 and CA110937).


  1. 1.
    Vansteensel MJ, Michel S, Meijer JH (2008) Organization of cell and tissue circadian pacemakers: a comparison among species. Brain Res Rev 58:18–47CrossRefPubMedGoogle Scholar
  2. 2.
    Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18:4–11CrossRefPubMedGoogle Scholar
  3. 3.
    Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277CrossRefPubMedGoogle Scholar
  4. 4.
    Kaeffer B, Pardini L (2005) Clock genes of mammalian cells: practical implications in tissue culture. In Vitro Cell Dev Biol Anim 41:311–320PubMedGoogle Scholar
  5. 5.
    Zhou YD, Barnard M, Tian H, Li X, Ring HZ, Francke U, Shelton J, Richardson J, Russell DW, McKnight SL (1997) Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci U S A 94:713–718CrossRefPubMedGoogle Scholar
  6. 6.
    Gilles-Gonzalez MA, Gonzalez G (2004) Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol 96:774–783CrossRefPubMedGoogle Scholar
  7. 7.
    Chen-Goodspeed M, Lee CC (2007) Tumor suppression and circadian function. J Biol Rhythms 22:291–298CrossRefPubMedGoogle Scholar
  8. 8.
    Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–509CrossRefPubMedGoogle Scholar
  9. 9.
    Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725CrossRefPubMedGoogle Scholar
  10. 10.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017CrossRefPubMedGoogle Scholar
  11. 11.
    Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50CrossRefPubMedGoogle Scholar
  12. 12.
    Hoffman AE, Zheng T, Ba Y, Zhu Y (2008) The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol Cancer Res 6:1461–1468CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu Y, Leaderer D, Guss C, Brown HN, Zhang Y, Boyle P, Stevens RG, Hoffman A, Qin Q, Han X, Zheng T (2007) Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer 120:432–435CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu Y, Stevens RG, Leaderer D, Hoffman A, Holford T, Zhang Y, Brown HN, Zheng T (2008) Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 107:421–425CrossRefPubMedGoogle Scholar
  15. 15.
    Chu LW, Zhu Y, Yu K, Zheng T, Yu H, Zhang Y, Sesterhenn I, Chokkalingam AP, Danforth KN, Shen MC, Stanczyk FZ, Gao YT, Hsing AW (2008) Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 11:342–348CrossRefPubMedGoogle Scholar
  16. 16.
    Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26:1241–1246CrossRefPubMedGoogle Scholar
  17. 17.
    Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9:797–800CrossRefPubMedGoogle Scholar
  18. 18.
    Tokunaga H, Takebayashi Y, Utsunomiya H, Akahira JI, Higashimoto M, Mashiko M, Ito K, Niikura H, Takenoshita SI, Yaegashi N (2008) Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet Gynecol Scand:1–11Google Scholar
  19. 19.
    Sobin LH, Fleming ID (1997) TNM Classification of Malignant Tumors, fifth edition. Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer, 80:1803-1804Google Scholar
  20. 20.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235CrossRefPubMedGoogle Scholar
  21. 21.
    Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Chung HW, Han W, Kim JS, Shin SG, Jang IJ, Yoo KY, Hirvonen A, Kang D (2005) Genetic polymorphisms of SULT1A1 and SULT1E1 and the risk and survival of breast cancer. Cancer Epidemiol Biomarkers Prev 14:1090–1095CrossRefPubMedGoogle Scholar
  22. 22.
    Mukaiyama Y, Uchida T, Sato E, Sasaki A, Sato Y, Igarashi J, Kurokawa H, Sagami I, Kitagawa T, Shimizu T (2006) Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix-loop-helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms. FEBS J 273:2528–2539CrossRefPubMedGoogle Scholar
  23. 23.
    Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC, Lin SF, Su WW, Chang JG (2008) Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog 47:925–933CrossRefPubMedGoogle Scholar
  24. 24.
    Lee CC (2006) Tumor suppression by the mammalian Period genes. Cancer Causes Control 17:525–530CrossRefPubMedGoogle Scholar
  25. 25.
    Hua H, Wang Y, Wan C, Liu Y, Zhu B, Wang X, Wang Z, Ding JM (2007) Inhibition of tumorigenesis by intratumoral delivery of the circadian gene mPer2 in C57BL/6 mice. Cancer Gene Ther 14:815–818CrossRefPubMedGoogle Scholar
  26. 26.
    Hua H, Wang Y, Wan C, Liu Y, Zhu B, Yang C, Wang X, Wang Z, Cornelissen-Guillaume G, Halberg F (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci 97:589–596CrossRefPubMedGoogle Scholar
  27. 27.
    Garcia-Saenz JA, Martin M, Maestro M, Vidaurreta M, Veganzones S, Villalobos L, Rodriguez-Lajusticia L, Rafael S, Sanz-Casla MT, Casado A, Sastre J, Arroyo M, Diaz-Rubio E (2006) Circulating tumoral cells lack circadian-rhythm in hospitalized metastasic breast cancer patients. Clin Transl Oncol 8:826–829CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Chunhui Yi
    • 1
  • Lina Mu
    • 1
  • Irene A. Rigault de la Longrais
    • 2
  • Olga Sochirca
    • 2
  • Riccardo Arisio
    • 3
  • Herbert Yu
    • 1
  • Aaron E. Hoffman
    • 1
  • Yong Zhu
    • 1
  • Dionyssios Katsaro
    • 2
  1. 1.Department of Epidemiology and Public HealthYale University School of MedicineNew HavenUSA
  2. 2.Department of Obstetrics and Gynecology, Gynecologic Oncology and Breast Cancer UnitUniversity of TurinTurinItaly
  3. 3.Department of PathologyS’Anna HospitalTurinItaly

Personalised recommendations