Skip to main content

Advertisement

Log in

CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Overexpression and alternative splicing of CD44 have been implicated in tumour progression. Here we describe the identification of a high level amplification of human 11p13, encompassing the CD44 gene, in primary breast cancers and cell lines and test whether CD44 acts as the driver of this amplicon. aCGH analysis revealed 11p13 amplification in 3% (3/100) of primary breast carcinomas and in two cell lines. The minimal region of amplification was 34.38–37.62 Mb. Amplification was confirmed by dual-colour FISH in these cell lines and further validated by CISH in an independent tumour cohort. CD44 expression in primary breast cancers was significantly associated with features of basal-like breast cancer. Detection of CD44 expression in breast cancer cell lines confirmed moderate to high expression in basal-like cell lines and minimal expression in luminal cell lines. In both, primary breast cancers and cell lines, 11p13 amplification was associated with high levels of CD44 mRNA expression. CD44 alternative splicing was detected in four of nine cell lines and in tumour samples, irrespective of the amplification status. RNAi mediated knock down of CD44 failed to reveal an increased dependence on CD44 expression for proliferation or survival in amplified cell lines. Given that expression of CD44 is not an absolute requirement for the survival of cells harbouring CD44 gene amplification, CD44 is unlikely to be a driver of the 11p13 amplicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aCGH:

Array chromosomal genomic hybridisation

CISH:

Chromogenic in situ hybridisation

Ck:

Cytokeratin

ER:

Oestrogen receptor

EGFR:

Epidermal growth factor receptor

FISH:

Fluorescent in situ hybridisation

PR:

Progesterone receptor

qRT-PCR:

Quantitative real-time polymerase chain reaction

References

  1. Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319. doi:10.1016/S0065-230X(08)60101-3

    Article  CAS  PubMed  Google Scholar 

  2. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi:10.1038/nrm1004

    Article  CAS  PubMed  Google Scholar 

  3. Joensuu H, Klemi PJ, Toikkanen S, Jalkanen S (1993) Glycoprotein CD44 expression and its association with survival in breast cancer. Am J Pathol 143:867–874

    CAS  PubMed  Google Scholar 

  4. Auvinen P, Tammi R, Tammi M, Johansson R, Kosma VM (2005) Expression of CD 44s, CD 44 v 3 and CD 44 v 6 in benign and malignant breast lesions: correlation and colocalization with hyaluronan. Histopathology 47:420–428. doi:10.1111/j.1365-2559.2005.02220.x

    Article  CAS  PubMed  Google Scholar 

  5. Berner HS, Nesland JM (2001) Expression of CD44 isoforms in infiltrating lobular carcinoma of the breast. Breast Cancer Res Treat 65:23–29. doi:10.1023/A:1006417412046

    Article  CAS  PubMed  Google Scholar 

  6. Kinoshita J, Haga S, Shimizu T, Imamura H, Watanabe O, Kajiwara T (1999) The expression of variant exon v7–v8 CD44 antigen in relation to lymphatic metastasis of human breast cancer. Breast Cancer Res Treat 53:177–183. doi:10.1023/A:1006130601575

    Article  CAS  PubMed  Google Scholar 

  7. Rys J, Kruczak A, Lackowska B, Jaszcz-Gruchala A, Brandys A, Stelmach A, Reinfuss M (2003) The role of CD44v3 expression in female breast carcinomas. Pol J Pathol 54:243–247

    PubMed  Google Scholar 

  8. Diaz LK, Zhou X, Wright ET, Cristofanilli M, Smith T, Yang Y, Sneige N, Sahin A, Gilcrease MZ (2005) CD44 expression is associated with increased survival in node-negative invasive breast carcinoma. Clin Cancer Res 11:3309–3314. doi:10.1158/1078-0432.CCR-04-2184

    Article  CAS  PubMed  Google Scholar 

  9. Ma W, Deng Y, Zhou L (2005) The prognostic value of adhesion molecule CD44v6 in women with primary breast carcinoma: a clinicopathologic study. Clin Oncol (R Coll Radiol) 17:258–263. doi:10.1016/j.clon.2005.02.007

    CAS  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100

    Article  CAS  PubMed  Google Scholar 

  11. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163. doi:10.1073/pnas.0703478104

    Article  CAS  PubMed  Google Scholar 

  12. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951. doi:10.1158/0008-5472.CAN-05-2018

    Article  CAS  PubMed  Google Scholar 

  13. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10:R52. doi:10.1186/bcr2106

    Article  PubMed  CAS  Google Scholar 

  14. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59. doi:10.1186/bcr1610

    Article  PubMed  CAS  Google Scholar 

  15. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511. doi:10.1158/0008-5472.CAN-05-0626

    Article  CAS  PubMed  Google Scholar 

  16. Isacke CM, Sauvage CA, Hyman R, Lesley J, Schulte R, Trowbridge IS (1986) Identification and characterization of the human Pgp-1 glycoprotein. Immunogenetics 23:326–332. doi:10.1007/BF00398797

    Article  CAS  PubMed  Google Scholar 

  17. Korsching E, Packeisen J, Agelopoulos K, Eisenacher M, Voss R, Isola J, van Diest PJ, Brandt B, Boecker W, Buerger H (2002) Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest 82:1525–1533

    CAS  PubMed  Google Scholar 

  18. Natrajan R, Lambros MB, Rodriguez-Pinilla SM, Moreno-Bueno G, Tan DSP, Marchio C, Vatcheva R, Rayter S, Mahler-Araujo B, Fulford LG, Hungermann D, Mackay A, Grigoriadis A, Fenwick K, Tamber N, Hardisson D, Tutt A, Palacios J, Lord CJ, Buerger H, Ashworth A, Reis-Filho JS (2009) Tiling path genomic profiling of grade III invasive ductal breast cancers. Clin Cancer Res 15(8). doi: 10.1158/1078-0432.CCR-08-1878

  19. Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW (1992) Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology 20:479–489

    Article  CAS  PubMed  Google Scholar 

  20. Singletary SE, Connolly JL (2006) Breast cancer staging: working with the sixth edition of the AJCC cancer staging manual. CA Cancer J Clin 56:37–47. doi:10.3322/canjclin.56.1.37 quiz 50-31

    Article  PubMed  Google Scholar 

  21. Tan DS, Marchio C, Jones RL, Savage K, Smith IE, Dowsett M, Reis-Filho JS (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111:27–44. doi:10.1007/s10549-007-9756-8

    Article  CAS  PubMed  Google Scholar 

  22. Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B (2005) EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 18:1027–1033. doi:10.1038/modpathol.3800438

    Article  CAS  PubMed  Google Scholar 

  23. Reis-Filho JS, Milanezi F, Carvalho S, Simpson PT, Steele D, Savage K, Lambros MB, Pereira EM, Nesland JM, Lakhani SR, Schmitt FC (2005) Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res 7:R1028–R1035. doi:10.1186/bcr1341

    Article  CAS  PubMed  Google Scholar 

  24. Marchio C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, Fenwick K, Mackay A, Senetta R, Di Palma S, Schmitt FC, Bussolati G, Ellis LO, Ashworth A, Sapino A, Reis-Filho JS (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410. doi:10.1002/path.2368

    Article  CAS  PubMed  Google Scholar 

  25. Marchio C, Natrajan R, Shiu KK, Lambros MB, Rodriguez-Pinilla SM, Tan DS, Lord CJ, Hungermann D, Fenwick K, Tamber N, Mackay A, Palacios J, Sapino A, Buerger H, Ashworth A, Reis-Filho JS (2008) The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216:399–407. doi:10.1002/path.2423

    Article  CAS  PubMed  Google Scholar 

  26. Arriola E, Marchio C, Tan DS, Drury SC, Lambros MB, Natrajan R, Rodriguez-Pinilla SM, Mackay A, Tamber N, Fenwick K, Jones C, Dowsett M, Ashworth A, Reis-Filho JS (2008) Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 88:491–503. doi:10.1038/labinvest.2008.19

    Article  CAS  PubMed  Google Scholar 

  27. Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL (2007) Resolving the resolution of array CGH. Genomics 89:647–653. doi:10.1016/j.ygeno.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  28. Tan DS, Lambros MB, Natrajan R, Reis-Filho JS (2007) Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest 87:737–754. doi:10.1038/labinvest.3700593

    Article  CAS  PubMed  Google Scholar 

  29. Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U, Ralfkiaer U, Mansouri M, Buhl AM, Smedby KE, Hjalgrim H, Syvanen AC, Borg A, Isaksson A, Jurlander J, Juliusson G, Rosenquist R (2008) Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia—a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosom Cancer 47:697–711. doi:10.1002/gcc.20575

    Article  CAS  PubMed  Google Scholar 

  30. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge J, Grubor V, Yoon S, Wigler M, Ye K, Borresen-Dale AL, Naume B, Schlicting E, Norton L, Hagerstrom T, Skoog L, Auer G, Maner S, Lundin P, Zetterberg A (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479. doi:10.1101/gr.5460106

    Article  CAS  PubMed  Google Scholar 

  31. Lambros MB, Simpson PT, Jones C, Natrajan R, Westbury C, Steele D, Savage K, Mackay A, Schmitt FC, Ashworth A, Reis-Filho JS (2006) Unlocking pathology archives for molecular genetic studies: a reliable method to generate probes for chromogenic and fluorescent in situ hybridization. Lab Invest 86:398–408. doi:10.1038/labinvest.3700390

    Article  CAS  PubMed  Google Scholar 

  32. Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K, Simpson PT, Jones C, Swift S, Mackay A, Reis RM, Hornick JL, Pereira EM, Baltazar F, Fletcher CD, Ashworth A, Lakhani SR, Schmitt FC (2006) EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol 209:445–453. doi:10.1002/path.2004

    Article  CAS  PubMed  Google Scholar 

  33. Hudson DL, Sleeman J, Watt FM (1995) CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J Cell Sci 108(Pt 5):1959–1970

    CAS  PubMed  Google Scholar 

  34. Roscic-Mrkic B, Fischer M, Leemann C, Manrique A, Gordon CJ, Moore JP, Proudfoot AE, Trkola A (2003) RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 102:1169–1177. doi:10.1182/blood-2003-02-0488

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374. doi:10.1158/1078-0432.CCR-04-0220

    Article  CAS  PubMed  Google Scholar 

  36. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi:10.1016/j.ccr.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  37. Chin L, Gray JW (2008) Translating insights from the cancer genome into clinical practice. Nature 452:553–563. doi:10.1038/nature06914

    Article  CAS  PubMed  Google Scholar 

  38. Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27:459–470. doi:10.1007/s10555-008-9130-2

    Article  CAS  PubMed  Google Scholar 

  39. Jarvinen AK, Autio R, Kilpinen S, Saarela M, Leivo I, Grenman R, Makitie AA, Monni O (2008) High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosom Cancer 47:500–509. doi:10.1002/gcc.20551

    Article  CAS  PubMed  Google Scholar 

  40. Fukuda Y, Kurihara N, Imoto I, Yasui K, Yoshida M, Yanagihara K, Park JG, Nakamura Y, Inazawa J (2000) CD44 is a potential target of amplification within the 11p13 amplicon detected in gastric cancer cell lines. Genes Chromosom Cancer 29:315–324. doi:10.1002/1098-2264(2000)9999:9999<::AID-GCC1047>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  41. Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, James M, Hornick JL, Pereira EM, Milanezi F, Fletcher CD, Schmitt FC, Ashworth A, Reis-Filho JS (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13:90–101. doi:10.1158/1078-0432.CCR-06-1371

    Article  CAS  PubMed  Google Scholar 

  42. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541. doi:10.1016/j.ccr.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  43. Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, Richon C, Yan K, Wang B, Vassal G, Delaloge S, Hortobagyi GN, Symmans WF, Lazar V, Pusztai L (2009) Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15:441–451. doi:10.1158/1078-0432.CCR-08-1791

    Article  CAS  PubMed  Google Scholar 

  44. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, Bertucci F (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284. doi:10.1038/sj.onc.1209254

    Article  CAS  PubMed  Google Scholar 

  45. Pegram M, Slamon D (2000) Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27:13–19

    CAS  PubMed  Google Scholar 

  46. Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao JH, Yu M, Miller MA, Santos JL, Kalloger SE, Carlson JW, Ginzinger DG, Celniker SE, Mills GB, Huntsman DG, Gray JW (2007) Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res 13:5745–5755. doi:10.1158/1078-0432.CCR-06-2882

    Article  CAS  PubMed  Google Scholar 

  47. Kao J, Pollack JR (2006) RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosom Cancer 45:761–769. doi:10.1002/gcc.20339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Breakthrough Breast Cancer grants to JSR-F and CMI. We acknowledge NHS funding to the NIHR Biomedical Research Centre. We thank Kay Savage and Suzanne Parry (Breakthrough Histopathology Laboratory, The Institute of Cancer Research) who performed the TMA immunohistochemical staining.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge S. Reis-Filho or Clare M. Isacke.

Additional information

Pamela Klingbeil and Rachael Natrajan have contributed equally to this work. RN and RV performed aCGH and data analysis and RV performed FISH and CISH. CM and JSR-F interpreted the immunohistochemical and in situ hybridisation experiments. JP and HB provided the breast cancer samples for aCGH. PK and GE performed all the cell based assays. CMI and JSR-F designed the experiments. PK, RN, JSR-F and CMI wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingbeil, P., Natrajan, R., Everitt, G. et al. CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification. Breast Cancer Res Treat 120, 95–109 (2010). https://doi.org/10.1007/s10549-009-0380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0380-7

Keywords

Navigation