Advertisement

Celecoxib and exemestane versus placebo and exemestane in postmenopausal metastatic breast cancer patients: a double-blind phase III GINECO study

  • C. Falandry
  • M. Debled
  • T. Bachelot
  • T. Delozier
  • J. Crétin
  • P. Romestaing
  • D. Mille
  • B. You
  • L. Mauriac
  • E. Pujade-Lauraine
  • G. Freyer
Clinical Trial

Abstract

The aim of this study was to evaluate antitumor effects of cyclooxygenase-2 inhibitors in breast carcinoma and their ability to act synergistically with aromatase inhibitors (AIs). Postmenopausal metastatic breast cancer patients without previous adjuvant AI treatment received exemestane 25 mg/days plus either celecoxib 400 mg twice daily or placebo. The primary endpoint was progression-free survival (PFS). This trial was prematurely terminated (N = 157 of 342 planned) after cardiovascular toxicity was reported in other celecoxib trials. Although no PFS difference was observed between the two arms (9.8 months for both, P = 0.72), a trend favoring celecoxib was observed in 60 tamoxifen-resistant patients (9.6 vs. 5.1 months; P = 0.14) and in 126 patients treated ≥3 months before study termination (12.2 vs. 9.8 months; P = 0.09). No severe adverse events were reported. Cyclooxygenase-2 inhibitors seemingly contribute to reverse endocrine resistance in breast cancer patients, although further study is necessary to allow development of a new therapeutic strategy.

Keywords

Breast cancer Celecoxib Exemestane Aromatase Cyclooxygenase-2 Clinical trial 

Notes

Acknowledgments

This study was supported by a grant from Pfizer Inc. The authors wish to thank Gerard P. Johnson, PhD, and Janet Stead, BM, BS, of Complete Healthcare Communications, Inc., for writing and editorial assistance provided on behalf of Pfizer Inc and to thank the investigators: S. Labadie-Lacourtoisie (Centre Paul Papin, Angers, France), D. Allouache (Centre Francois Baclesse, Caen, France), T. Bachelot (Centre Léon Bérard, Lyon, France), J.-C. Barats (Hôpitaux Civils de Colmar, Colmar, Cedex, France), C. Becuwe (Centre d’Oncologie de Gentilly, Nancy, France), E. Blot (Centre Henri Becquerel, Rouen, France), E. Brain (Centre René Huguenin, Saint-Cloud, France), P. Chinet-Charrot (Centre Henri Becquerel, Rouen, France), O. Collard (Institut de Cancérologie de la Loire, Saint Priest en Jarrest, France), J. Crétin (Clinique Valdegour, Nîmes, France, and Clinique Bonnefon, Alès, France), G. De Rauglaudre (Clinique Sainte Catherine, Avignon, France), P. De Saint Hilaire (Hôpital de la Croix-Rousse, Lyon, France), M. Debled (Institut Bergonié, Bordeaux, France), T. Delozier (Centre Francois Baclesse, Caen, France), R. Delva (Centre Paul Papin, Angers, France), B. Duvert (Centre Hospitalier Général, Lons-le-Saunier, France), M. Edel (Hôpital du Hasenrain, Mulhouse, France), J.-M. Ferrero (Centre Antoine Lacassagne, Nice, France), G. Freyer (Centre Hospitalier Lyon Sud, Pierre-Bénite, France), J.-P. Guastalla (Centre Léon Bérard, Lyon, France), C. Guillemet (Centre Henri Becquerel, Rouen, France), C. Hanzen (Centre Henri Becquerel, Rouen, France), A.-C. Hardy-Bessard (Clinique Armoricaine de Radiologie, Saint Brieuc, France), J.-P. Jacquin (Clinique de la Digonnière, Saint-Etienne, France), S. Kirscher (Clinique Sainte Catherine, Avignon, France), J.-M. Ladonne (Centre Henri Becquerel, Rouen, France), R. Largillier (Centre Antoine Lacassange, Nice, France), B. Leduc (Centre Hospitalier Général, Brive-la-Gaillarde, France), B. Levaché (Polyclinique Francheville, Périgueux, France), E. Levy (Hôpital Européen Georges Pompidou, Paris, France), L. Mauriac (Institut Bergonié Regional Cancer Centre, Bordeaux, France), L. Mefti (Centre René Huguenin, Sant-Cloud, France), D. Mille (Institut de Cancérologie de la Loire, Saint Priest en Jarrest, France), S. Oddou-Lagranière (Centre Hospitalier intercommunal des Alpes du Sud, Gap, France), D. Piot (Clinique des Ormeaux—Vauban, Le Havre, France), F. Priou (Centre Hospitalier Départemental, La Roche sur Yon, France), P. Romestaing (Centre Hospitalier Lyon Sud, Pierre-Bénite, France), D. Solub (Hôpital Fontenoy, Chartres, France), P. Soulie (Centre Paul Papin, Angers, France), V. Trillet-Lenoir (Centre Hospitalier Lyon Sud, Pierre-Bénite, France), B. Valenza (Centre Hospitalier, Draguignan, France), and C. Veyret (Centre Henri Becquerel, Rouen, France).

References

  1. 1.
    American CancerSociety (2006) Cancer facts and figures 2006. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  3. 3.
    Crown J, Dieras V, Kaufmann M et al (2002) Chemotherapy for metastatic breast cancer-report of a European expert panel. Lancet Oncol 3:719–727. doi: 10.1016/S1470-2045(02)00927-0 PubMedCrossRefGoogle Scholar
  4. 4.
    von Minckwitz G (2006) Evidence-based treatment of metastatic breast cancer—2006 recommendations by the AGO Breast Commission. Eur J Cancer 42:2897–2908. doi: 10.1016/j.ejca.2006.06.033 CrossRefGoogle Scholar
  5. 5.
    Wilcken N, Hornbuckle J, Ghersi D (2003) Chemotherapy alone versus endocrine therapy alone for metastatic breast cancer. Cochrane Database Syst Rev CD002747Google Scholar
  6. 6.
    Beslija S, Bonneterre J, Burstein H et al (2007) Second consensus on medical treatment of metastatic breast cancer. Ann Oncol 18:215–225. doi: 10.1093/annonc/mdl155 PubMedCrossRefGoogle Scholar
  7. 7.
    Bonneterre J, Buzdar A, Nabholtz JM et al (2001) Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 92:2247–2258. doi:10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  8. 8.
    Mouridsen H, Gershanovich M, Sun Y et al (2003) Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21:2101–2109. doi: 10.1200/JCO.2003.04.194 PubMedCrossRefGoogle Scholar
  9. 9.
    Nabholtz JM, Buzdar A, Pollak M et al (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial Arimidex Study Group. J Clin Oncol 18:3758–3767PubMedGoogle Scholar
  10. 10.
    Paridaens RJ, Dirix LY, Beex LV et al (2008) Results of a randomized clinical trial comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: a phase III study conducted by the EORTC Breast Cancer Cooperative Group. Breast Cancer Res Treat (in press)Google Scholar
  11. 11.
    Schrey MP, Patel KV (1995) Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 72:1412–1419PubMedGoogle Scholar
  12. 12.
    Huang M, Stolina M, Sharma S et al (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58:1208–1216PubMedGoogle Scholar
  13. 13.
    Chang S-H, Liu CH, Conway R et al (2004) Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 101:591–596. doi: 10.1073/pnas.2535911100 PubMedCrossRefGoogle Scholar
  14. 14.
    Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501. doi: 10.1016/0092-8674(95)90127-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716. doi:1 10.1016/S0092-8674(00)81433-6 PubMedCrossRefGoogle Scholar
  16. 16.
    O’Neill GP, Ford-Hutchinson AW (1993) Expression of mRNA forcyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 330:156–160. doi: 10.1016/0014-5793(93)80263-T PubMedGoogle Scholar
  17. 17.
    Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188PubMedGoogle Scholar
  18. 18.
    Parrett M, Harris R, Joarder F, Clausen K, Robertson F (1997) Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncol 10:503–507Google Scholar
  19. 19.
    Liu CH, Chang S-H, Narko K et al (2001) Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276:18563–18569. doi: 10.1074/jbc.M010787200 PubMedCrossRefGoogle Scholar
  20. 20.
    Howe LR, Chang S-H, Tolle KC et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65:10113–10119. doi: 10.1158/0008-5472.CAN-05-1524 PubMedCrossRefGoogle Scholar
  21. 21.
    Harris RE, Namboodiri KK, Farrar WB (1996) Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 7:203–205. doi: 10.1097/00001648-199603000-00017 PubMedCrossRefGoogle Scholar
  22. 22.
    Kucab JE, Lee C, Chen CS et al (2005) Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 7:R796–R807. doi: 10.1186/bcr1294 PubMedCrossRefGoogle Scholar
  23. 23.
    Basu GD, Pathangey LB, Tinder TL et al (2004) Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2:632–642PubMedGoogle Scholar
  24. 24.
    Alshafie GA, Abou-Issa HM, Seibert K, Harris RE (2000) Chemotherapeutic evaluation of celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model. Oncol Rep 7:1377–1381PubMedGoogle Scholar
  25. 25.
    Howe LR, Subbaramaiah K, Patel J et al (2002) Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res 62:5405–5407PubMedGoogle Scholar
  26. 26.
    Lanza-Jacoby S, Miller S, Flynn J et al (2003) The cyclooxygenase-2 inhibitor, celecoxib, prevents the development of mammary tumors in HER-2/neu mice. Cancer Epidemiol Biomarkers Prev 12:1486–1491PubMedGoogle Scholar
  27. 27.
    Higuchi T, Iwama T, Yoshinaga K et al (2003) A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res 9:4756–4760PubMedGoogle Scholar
  28. 28.
    Steinbach G, Lynch PM, Phillips RKS et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952. doi: 10.1056/NEJM200006293422603 PubMedCrossRefGoogle Scholar
  29. 29.
    Muller-Decker K, Berger I, Ackermann K et al (2005) Cystic duct dilatations and proliferative epithelial lesions in mouse mammary glands upon keratin 5 promoter-driven overexpression of cyclooxygenase-2. Am J Pathol 166:575–584PubMedGoogle Scholar
  30. 30.
    Pesenti E, Masferrer J, di Salle E (2001) Effect of exemestane and celecoxib alone or in combination on DBMA-induced mammary carcinoma in rats. Breast Cancer Res 69:288 abstractGoogle Scholar
  31. 31.
    Canney PA, Machin MA, Curto J (2006) A feasibility study of the efficacy and tolerability of the combination of exemestane with the COX-2 inhibitor celecoxib in post-menopausal patients with advanced breast cancer. Eur J Cancer 42:2751–2756. doi: 10.1016/j.ejca.2006.08.014 PubMedCrossRefGoogle Scholar
  32. 32.
    Chow LW, Wong JL, Toi M (2003) Celecoxib anti-aromatase neoadjuvant (CAAN) trial for locally advanced breast cancer: preliminary report. J Steroid Biochem Mol Biol 86:443–447. doi: 10.1016/S0960-0760(03)00355-8 PubMedCrossRefGoogle Scholar
  33. 33.
    Dirix LY, Ignacio J, Nag S et al (2008) Treatment of advanced hormone-sensitive breast cancer in postmenopausal women with exemestane alone or in combination with celecoxib. J Clin Oncol 26:1253–1259. doi: 10.1200/JCO.2007.13.3744 PubMedCrossRefGoogle Scholar
  34. 34.
    Solomon SD, McMurray JJ, Pfeffer MA et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080. doi: 10.1056/NEJMoa050405 PubMedCrossRefGoogle Scholar
  35. 35.
    Harris R, Beebe-Donk J, Alshafie G (2006) Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 6:27. doi: 10.1186/1471-2407-6-27 PubMedCrossRefGoogle Scholar
  36. 36.
    Rahme E, Ghosn J, Dasgupta K, Rajan R, Hudson M (2005) Association between frequent use of nonsteroidal anti-inflammatory drugs and breast cancer. BMC Cancer 5:159. doi: 10.1186/1471-2407-5-159 PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137:5739–5742. doi: 10.1210/en.137.12.5739 PubMedCrossRefGoogle Scholar
  38. 38.
    Chow LWC, Toi M (2005) Celecoxib anti-aromatase neoadjuvant (CAAN) trial for locally advanced breast cancer. Paper presented at 28th annual San Antonio breast cancer symposium, San Antonio, 8–11 December 2005Google Scholar
  39. 39.
    Dang CT, Dannenberg AJ, Subbaramaiah K et al (2004) Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin Cancer Res 10:4062–4067. doi: 10.1158/1078-0432.CCR-03-0463 PubMedCrossRefGoogle Scholar
  40. 40.
    US Food and Drug Administration (2004) FDA statement on the halting of a clinical trial of the Cox-2 inhibitor celebrex. US Food and Drug Administration. Available via http://www.fda.gov/bbs/topics/news/2004/NEW01144.html. Cited 24 June 2008
  41. 41.
    US Food and Drug Administration (2004) Public Health Advisory: non-steroidal anti-inflammatory drug products (NSAIDs). US Food and Drug Administration. Available via http://www.fda.gov/cder/drug/advisory/nsaids.htm. Cited 24 June 2008
  42. 42.
    US Food and Drug Administration (2005) Analysis and recommendations for Agency action regarding non-steroidal anti-inflammatory drugs and cardiovascular risk. US Food and Drug Administration. Available via http://www.fda.gov/cder/drug/infopage/COX2/NSAIDdecisionMemo.pdf. Cited 24 June 2008
  43. 43.
    Bouchard MF, Taniguchi H, Viger RS (2005) Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 146:4905–4916. doi: 10.1210/en.2005-0187 PubMedCrossRefGoogle Scholar
  44. 44.
    Zhou J, Suzuki T, Kovacic A et al (2005) Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res 65:657–663PubMedGoogle Scholar
  45. 45.
    Bulun SE, Sebastian S, Takayama K et al (2003) The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol 86:219–224. doi: 10.1016/S0960-0760(03)00359-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • C. Falandry
    • 1
    • 2
  • M. Debled
    • 3
  • T. Bachelot
    • 4
  • T. Delozier
    • 5
  • J. Crétin
    • 6
    • 7
  • P. Romestaing
    • 2
  • D. Mille
    • 8
  • B. You
    • 2
  • L. Mauriac
    • 3
  • E. Pujade-Lauraine
    • 9
  • G. Freyer
    • 1
    • 2
  1. 1.Université de LyonLyonFrance
  2. 2.Centre Hospitalier Lyon Sud, Hospices Civils de LyonPierre-BéniteFrance
  3. 3.Institut Bergonié Regional Cancer CentreBordeauxFrance
  4. 4.Centre Léon BérardLyonFrance
  5. 5.Centre Francois BaclesseCaenFrance
  6. 6.Clinique ValdegourNîmesFrance
  7. 7.Clinique BonnefonAlèsFrance
  8. 8.Institut de Cancérologie de la LoireSaint Priest en JarezFrance
  9. 9.Hôpital Hôtel-DieuParisFrance

Personalised recommendations