Expression profile of microRNAs in c-Myc induced mouse mammary tumors

  • Yuan Sun
  • Jack Wu
  • Si-hung Wu
  • Archana Thakur
  • Aliccia Bollig
  • Yong Huang
  • D. Joshua Liao
Brief Report


c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.


c-myc MicroRNA Breast cancer Microarray 



This work is supported by a grant from Elsa U. Pardee Foundation on microRNA in breast cancer and a grant from NCI, NIH (RO1CA100864) to D.J. Liao. We would like to thank Dr. Fred Bogott for his excellent English editing of the manuscript.


  1. 1.
    Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi: 10.1093/hmg/ddm336 CrossRefPubMedGoogle Scholar
  2. 2.
    Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214. doi: 10.1242/dev.005629 CrossRefPubMedGoogle Scholar
  3. 3.
    Arenz C (2006) MicroRNAs—future drug targets? Angew Chem Int Ed Engl 45:5048–5050. doi: 10.1002/anie.200601537 CrossRefPubMedGoogle Scholar
  4. 4.
    Griffiths-Jones S, Grocock RJ, van DS, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi: 10.1093/nar/gkj112 CrossRefPubMedGoogle Scholar
  5. 5.
    Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12. doi: 10.1016/j.cell.2005.06.030 CrossRefPubMedGoogle Scholar
  6. 6.
    Zamore PD, Haley B (2005) Ribo-genome: the big world of small RNAs. Science 309:1519–1524. doi: 10.1126/science.1111444 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMedGoogle Scholar
  8. 8.
    Lu J, Qian J, Chen F, Tang X, Li C, Cardoso WV (2005) Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun 334:319–323. doi: 10.1016/j.bbrc.2005.05.206 CrossRefPubMedGoogle Scholar
  9. 9.
    Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi: 10.1038/nature03702 CrossRefPubMedGoogle Scholar
  10. 10.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi: 10.1073/pnas.0510565103 CrossRefPubMedGoogle Scholar
  11. 11.
    Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al (2005) A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632. doi: 10.1158/0008-5472.CAN-05-2352 CrossRefPubMedGoogle Scholar
  12. 12.
    Verghese E, Hanby A, Speirs V, Hughes T (2008) Small is beautiful: microRNAs and breast cancer—where are we now? J Pathol 215:214–221. doi: 10.1002/path.2359 CrossRefPubMedGoogle Scholar
  13. 13.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi: 10.1158/0008-5472.CAN-05-1783 CrossRefPubMedGoogle Scholar
  14. 14.
    Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158PubMedGoogle Scholar
  15. 15.
    Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7:143–164. doi: 10.1677/erc.0.0070143 CrossRefPubMedGoogle Scholar
  16. 16.
    Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676PubMedGoogle Scholar
  17. 17.
    Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063. doi: 10.1158/0008-5472.CAN-07-0426 CrossRefPubMedGoogle Scholar
  18. 18.
    Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166PubMedGoogle Scholar
  19. 19.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843. doi: 10.1038/nature03677 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi: 10.1073/pnas.0508889103 CrossRefPubMedGoogle Scholar
  21. 21.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi: 10.1073/pnas.0307323101 CrossRefPubMedGoogle Scholar
  22. 22.
    Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394. doi: 10.1158/0008-5472.CAN-06-0800 CrossRefPubMedGoogle Scholar
  23. 23.
    Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV, Hyslop T et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022. doi: 10.1073/pnas.0702177104 CrossRefPubMedGoogle Scholar
  24. 24.
    Liao DJ, Du QQ, Yu BW, Grignon D, Sarkar FH (2003) Novel perspective: focusing on the X chromosome in reproductive cancers. Cancer Invest 21:641–658. doi: 10.1081/CNV-120022385 CrossRefPubMedGoogle Scholar
  25. 25.
    Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi: 10.1002/path.2021 CrossRefPubMedGoogle Scholar
  26. 26.
    Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095. doi: 10.1158/0008-5472.CAN-03-3773 CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt H, Bartel F, Kappler M, Wurl P, Lange H, Bache M et al (2005) Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18:638–644. doi: 10.1038/modpathol.3800326 CrossRefPubMedGoogle Scholar
  28. 28.
    Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421PubMedGoogle Scholar
  29. 29.
    Sabbir MG, Roy A, Mandal S, Dam A, Roychoudhury S, Panda CK (2006) Deletion mapping of chromosome 13q in head and neck squamous cell carcinoma in Indian patients: correlation with prognosis of the tumour. Int J Exp Pathol 87:151–161. doi: 10.1111/j.0959-9673.2006.00467.x CrossRefPubMedGoogle Scholar
  30. 30.
    Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317PubMedGoogle Scholar
  31. 31.
    Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335PubMedGoogle Scholar
  32. 32.
    Hossain A, Kuo MT, Saunders GF (2006) Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–8201. doi: 10.1128/MCB.00242-06 CrossRefPubMedGoogle Scholar
  33. 33.
    Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018PubMedGoogle Scholar
  34. 34.
    Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316PubMedGoogle Scholar
  35. 35.
    Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3CrossRefPubMedGoogle Scholar
  36. 36.
    Loupart ML, Adams S, Armour JA, Walker R, Brammar W, Varley J (1995) Loss of heterozygosity on the X chromosome in human breast cancer. Genes Chromosom Cancer 13:229–238. doi: 10.1002/gcc.2870130402 CrossRefPubMedGoogle Scholar
  37. 37.
    Filmus J (2001) Glypicans in growth control and cancer. Glycobiology 11:19R–23R. doi: 10.1093/glycob/11.3.19R CrossRefPubMedGoogle Scholar
  38. 38.
    Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi: 10.1073/pnas.0502583102 CrossRefPubMedGoogle Scholar
  39. 39.
    Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752PubMedGoogle Scholar
  40. 40.
    Simard J, Dumont M, Soucy P, Labrie F (2002) Perspective: prostate cancer susceptibility genes. Endocrinology 143:2029–2040. doi: 10.1210/en.143.6.2029 CrossRefPubMedGoogle Scholar
  41. 41.
    Stephan DA, Howell GR, Teslovich TM, Coffey AJ, Smith L, Bailey-Wilson JE et al (2002) Physical and transcript map of the hereditary prostate cancer region at xq27. Genomics 79:41–50. doi: 10.1006/geno.2001.6681 CrossRefPubMedGoogle Scholar
  42. 42.
    Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi: 10.1038/72877 CrossRefPubMedGoogle Scholar
  43. 43.
    Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi: 10.1016/S0888-7543(03)00183-6 CrossRefPubMedGoogle Scholar
  44. 44.
    Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi: 10.1002/ijc.10371 CrossRefPubMedGoogle Scholar
  45. 45.
    Schroer A, Schneider S, Ropers H, Nothwang H (1999) Cloning and characterization of UXT, a novel gene in human Xp11, which is widely and abundantly expressed in tumor tissue. Genomics 56:340–343. doi: 10.1006/geno.1998.5712 CrossRefPubMedGoogle Scholar
  46. 46.
    Jazaeri AA, Chandramouli GV, Aprelikova O, Nuber UA, Sotiriou C, Liu ET et al (2004) BRCA1-mediated repression of select X chromosome genes. J Transl Med 2:32. doi: 10.1186/1479-5876-2-32 CrossRefPubMedGoogle Scholar
  47. 47.
    Rakheja D, Kapur P, Tomlinson GE, Margraf LR (2005) Pediatric renal cell carcinomas with Xp11.2 rearrangements are immunoreactive for hMLH1 and hMSH2 proteins. Pediatr Dev Pathol 8:615–620. doi: 10.1007/s10024-005-0148-y CrossRefPubMedGoogle Scholar
  48. 48.
    Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi: 10.1006/geno.1999.5878 CrossRefPubMedGoogle Scholar
  49. 49.
    Fu HJ, Zhu J, Yang M, Zhang ZY, Tie Y, Jiang H et al (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32:197–204. doi: 10.1385/MB:32:3:197 CrossRefPubMedGoogle Scholar
  50. 50.
    Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun 343:85–89. doi: 10.1016/j.bbrc.2006.02.106 CrossRefPubMedGoogle Scholar
  51. 51.
    Lao K, Xu NL, Sun YA, Livak KJ, Straus NA (2007) Real time PCR profiling of 330 human micro-RNAs. Biotechnol J 2:33–35. doi: 10.1002/biot.200600119 CrossRefPubMedGoogle Scholar
  52. 52.
    Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839. doi: 10.1073/pnas.0604129103 CrossRefPubMedGoogle Scholar
  53. 53.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50. doi: 10.1038/ng.2007.30 CrossRefPubMedGoogle Scholar
  54. 54.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi: 10.1038/nature03552 CrossRefPubMedGoogle Scholar
  55. 55.
    Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC et al (2008) MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122:699–704. doi: 10.1002/ijc.23153 CrossRefPubMedGoogle Scholar
  56. 56.
    Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi: 10.1111/j.1349-7006.2008.00779.x CrossRefPubMedGoogle Scholar
  57. 57.
    Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi: 10.1038/sj.onc.1210390 CrossRefPubMedGoogle Scholar
  58. 58.
    Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17–92 microRNA cluster. Cancer Res 68:5540–5545. doi: 10.1158/0008-5472.CAN-07-6460 CrossRefPubMedGoogle Scholar
  59. 59.
    Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi: 10.1038/sj.onc.1210425 CrossRefPubMedGoogle Scholar
  60. 60.
    Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi: 10.1002/ijc.21934 CrossRefPubMedGoogle Scholar
  61. 61.
    Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi: 10.1002/ajmg.1320410437 CrossRefPubMedGoogle Scholar
  62. 62.
    Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi: 10.1073/pnas.84.9.2970 CrossRefPubMedGoogle Scholar
  63. 63.
    Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi: 10.1038/ng.89 CrossRefPubMedGoogle Scholar
  64. 64.
    Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi: 10.1159/000134127 CrossRefPubMedGoogle Scholar
  65. 65.
    Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMedGoogle Scholar
  66. 66.
    Thakur A, Bollig A, Wu J, Liao DJ (2008) Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 7:11. doi: 10.1186/1476-4598-7-11 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Yuan Sun
    • 1
  • Jack Wu
    • 1
    • 2
  • Si-hung Wu
    • 1
  • Archana Thakur
    • 2
  • Aliccia Bollig
    • 2
  • Yong Huang
    • 3
  • D. Joshua Liao
    • 1
  1. 1.Hormel InstituteUniversity of MinnesotaAustinUSA
  2. 2.Department of PathologyWayne State UniversityDetroitUSA
  3. 3.Section of Genetic Medicine, Department of MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations