Skip to main content

Advertisement

Log in

Characterization of the weak estrogen receptor α agonistic activity of exemestane

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines. In addition, the top regulated genes in the EXE O lines were mostly estrogen-responsive genes. This estrogen-like activity of EXE was further validated using estrogen receptor (ER) activity assays, where in comparison to 17β-estradiol (E2), EXE was able to induce ER activity, though at a higher concentration. Also, this EXE-mediated ER activity was blocked by the ER antagonist ICI as well as the ERα-specific antagonist methyl-piperidino-pyrazole (MPP). Similarly, EXE was able to induce proliferation of breast cancer cell lines, MCF-7 and MCF-7aro, as well as activate transcription of known estrogen-responsive genes, i.e., PGR, pS2 and AREG. These results suggest that EXE does have weak estrogen-like activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://research.i2r.a-star.edu.sg/kberg/.

  2. http://bioinformatics.med.ohio-state.edu/ERTargetDB/.

References

  1. Santner SJ, Chen S, Zhou D, Korsunsky Z, Martel J, Santen RJ (1993) Effect of androstenedione on growth of untransfected and aromatase-transfected MCF-7 cells in culture. J Steroid Biochem Mol Biol 44(4–6):611–616. doi:10.1016/0960-0760(93)90267-Z

    Article  PubMed  CAS  Google Scholar 

  2. Yue W, Wang JP, Hamilton CJ, Demers LM, Santen RJ (1998) In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 58(5):927–932

    PubMed  CAS  Google Scholar 

  3. Miller WR, O’Neill J (1987) The importance of local synthesis of estrogen within the breast. Steroids 50(4–6):537–548. doi:10.1016/0039-128X(87)90037-7

    Article  PubMed  CAS  Google Scholar 

  4. Bulun SE, Price TM, Aitken J, Mahendroo MS, Simpson ER (1993) A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J Clin Endocrinol Metab 77(6):1622–1628. doi:10.1210/jc.77.6.1622

    Article  PubMed  CAS  Google Scholar 

  5. Esteban JM, Warsi Z, Haniu M, Hall P, Shively JE, Chen S (1992) Detection of intratumoral aromatase in breast carcinomas. An immunohistochemical study with clinicopathologic correlation. Am J Pathol 140(2):337–343

    PubMed  CAS  Google Scholar 

  6. James VH, McNeill JM, Lai LC, Newton CJ, Ghilchik MW, Reed MJ (1987) Aromatase activity in normal breast and breast tumor tissues: in vivo and in vitro studies. Steroids 50(1–3):269–279. doi:10.1016/0039-128X(83)90077-6

    Article  PubMed  CAS  Google Scholar 

  7. Lu Q, Nakmura J, Savinov A, Yue W, Weisz J, Dabbs DJ et al (1996) Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancers. Endocrinology 137(7):3061–3068. doi:10.1210/en.137.7.3061

    Article  PubMed  CAS  Google Scholar 

  8. Santen RJ, Martel J, Hoagland M, Naftolin F, Roa L, Harada N et al (1994) Stromal spindle cells contain aromatase in human breast tumors. J Clin Endocrinol Metab 79(2):627–632. doi:10.1210/jc.79.2.627

    Article  PubMed  CAS  Google Scholar 

  9. Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350(11):1081–1092. doi:10.1056/NEJMoa040331

    Article  PubMed  CAS  Google Scholar 

  10. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ et al (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97(17):1262–1271

    Article  PubMed  CAS  Google Scholar 

  11. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF et al (2005) Results of the ATAC (Arimidex, Tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62. doi:10.1016/S0140-6736(04)17666-6

    Article  PubMed  CAS  Google Scholar 

  12. Brueggemeier RW (2001) Aromatase, aromatase inhibitors, and breast cancer. Am J Ther 8(5):333–344. doi:10.1097/00045391-200109000-00007

    Article  PubMed  CAS  Google Scholar 

  13. Wang X, Chen S (2006) Aromatase destabilizer: novel action of exemestane, a food and drug administration-approved aromatase inhibitor. Cancer Res 66(21):10281–10286. doi:10.1158/0008-5472.CAN-06-2134

    Article  PubMed  CAS  Google Scholar 

  14. Ariazi EA, Leitao A, Oprea TI, Chen B, Louis T, Bertucci AM et al (2007) Exemestane’s 17-hydroxylated metabolite exerts biological effects as an androgen. Mol Cancer Ther 6(11):2817–2827. doi:10.1158/1535-7163.MCT-07-0312

    Article  PubMed  CAS  Google Scholar 

  15. di Salle E, Ornati G, Giudici D, Lassus M, Evans TR, Coombes RC (1992) Exemestane (FCE 24304), a new steroidal aromatase inhibitor. J Steroid Biochem Mol Biol 43(1–3):137–143. doi:10.1016/0960-0760(92)90198-R

    Article  PubMed  CAS  Google Scholar 

  16. Lonning PE, Bajetta E, Murray R, Tubiana-Hulin M, Eisenberg PD, Mickiewicz E et al (2000) Activity of exemestane in metastatic breast cancer after failure of nonsteroidal aromatase inhibitors: a phase II trial. J Clin Oncol 18(11):2234–2244

    PubMed  CAS  Google Scholar 

  17. Goss PE, Hadji P, Subar M, Abreu P, Thomsen T, Banke-Bochita J (2007) Effects of steroidal and nonsteroidal aromatase inhibitors on markers of bone turnover in healthy postmenopausal women. Breast Cancer Res 9(4):R52. doi:10.1186/bcr1757

    Article  PubMed  CAS  Google Scholar 

  18. Sun XZ, Zhou D, Chen S (1997) Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. J Steroid Biochem Mol Biol 63(1–3):29–36. doi:10.1016/S0960-0760(97)00068-X

    Article  PubMed  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  20. Chen S, Masri S, Hong Y, Wang X, Phung S, Yuan YC, Wu X (2007) New experimental models for aromatase inhibitor resistance. J Steroid Biochem Mol Biol 106(1–5):8–15

    Article  PubMed  CAS  Google Scholar 

  21. Chen S, Masri S, Wang X, Phung S, Yuan YC, Wu X (2006) What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 102(1–5):232–240

    Article  PubMed  CAS  Google Scholar 

  22. Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L et al (2008) Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 68(12):4910–4918. doi:10.1158/0008-5472.CAN-08-0303

    Article  PubMed  CAS  Google Scholar 

  23. Itoh T, Karlsberg K, Kijima I, Yuan YC, Smith D, Ye J et al (2005) Letrozole-, anastrozole-, and tamoxifen-responsive genes in MCF-7aro cells: a microarray approach. Mol Cancer Res 3(4):203–218

    PubMed  CAS  Google Scholar 

  24. Kijima I, Itoh T, Chen S (2005) Growth inhibition of estrogen receptor-positive and aromatase-positive human breast cancer cells in monolayer and spheroid cultures by letrozole, anastrozole, and tamoxifen. J Steroid Biochem Mol Biol 97(4):360–368. doi:10.1016/j.jsbmb.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Masri S, Phung S, Chen S (2008) The role of amphiregulin in exemestane-resistant breast cancer cells: evidence of an autocrine loop. Cancer Res 68(7):2259–2265

    Google Scholar 

  26. Harrington WR, Sheng S, Barnett DH, Petz LN, Katzenellenbogen JA, Katzenellenbogen BS (2003) Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Mol Cell Endocrinol 206(1–2):13–22. doi:10.1016/S0303-7207(03)00255-7

    Article  PubMed  CAS  Google Scholar 

  27. Compton DR, Sheng S, Carlson KE, Rebacz NA, Lee IY, Katzenellenbogen BS et al (2004) Pyrazolo[1, 5-a]pyrimidines: estrogen receptor ligands possessing estrogen receptor beta antagonist activity. J Med Chem 47(24):5872–5893. doi:10.1021/jm049631k

    Article  PubMed  CAS  Google Scholar 

  28. Chien AJ, Goss PE (2006) Aromatase inhibitors and bone health in women with breast cancer. J Clin Oncol 24(33):5305–5312. doi:10.1200/JCO.2006.07.5382

    Article  PubMed  CAS  Google Scholar 

  29. Lonning PE (2006) Bone safety of aromatase inhibitors versus tamoxifen. Int J Gynecol Cancer 16(Suppl 2):518–520. doi:10.1111/j.1525-1438.2006.00685.x

    Article  PubMed  Google Scholar 

  30. Perez EA (2007) Safety profiles of tamoxifen and the aromatase inhibitors in adjuvant therapy of hormone-responsive early breast cancer. Ann Oncol 18(Suppl 8):viii26–viii35

    Article  PubMed  Google Scholar 

  31. Coleman RE, Banks LM, Girgis SI, Kilburn LS, Vrdoljak E, Fox J et al (2007) Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol 8(2):119–127. doi:10.1016/S1470-2045(07)70003-7

    Article  PubMed  CAS  Google Scholar 

  32. Goss PE, Qi S, Josse RG, Pritzker KP, Mendes M, Hu H et al (2004) The steroidal aromatase inhibitor exemestane prevents bone loss in ovariectomized rats. Bone 34(3):384–392. doi:10.1016/j.bone.2003.11.006

    Article  PubMed  CAS  Google Scholar 

  33. Goss PE, Qi S, Cheung AM, Hu H, Mendes M, Pritzker KP (2004) Effects of the steroidal aromatase inhibitor exemestane and the nonsteroidal aromatase inhibitor letrozole on bone and lipid metabolism in ovariectomized rats. Clin Cancer Res 10(17):5717–5723. doi:10.1158/1078-0432.CCR-04-0438

    Article  PubMed  CAS  Google Scholar 

  34. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 5(4):311–319

    Article  PubMed  CAS  Google Scholar 

  35. Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101(9):1942–1950. doi:10.1172/JCI1039

    Article  PubMed  CAS  Google Scholar 

  36. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72(4):1396–1409. doi:10.1172/JCI111096

    Article  PubMed  CAS  Google Scholar 

  37. Di Gregorio GB, Yamamoto M, Ali AA, Abe E, Roberson P, Manolagas SC et al (2001) Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol. J Clin Invest 107(7):803–812. doi:10.1172/JCI11653

    Article  PubMed  CAS  Google Scholar 

  38. Dang ZC, van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CW (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17(3):394–405. doi:10.1359/jbmr.2002.17.3.394

    Article  PubMed  CAS  Google Scholar 

  39. Miki Y, Suzuki T, Hatori M, Igarashi K, Aisaki KI, Kanno J et al (2007) Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone 40(4):876–887. doi:10.1016/j.bone.2006.11.029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

S. Masri was supported by NIH pre-doctoral training fellowship CA123691 and S. Chen by NIH grants CA044735 and ES08258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiuan Chen.

Additional information

Microarray data in this publication has been deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and is accessible through GEO Series accession number GSE10911.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masri, S., Lui, K., Phung, S. et al. Characterization of the weak estrogen receptor α agonistic activity of exemestane. Breast Cancer Res Treat 116, 461–470 (2009). https://doi.org/10.1007/s10549-008-0151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0151-x

Keywords

Navigation