Breast Cancer Research and Treatment

, Volume 117, Issue 2, pp 433–441 | Cite as

Low activation of Insulin-like Growth Factor 1-Receptor (IGF1R) is associated with local recurrence in early breast carcinoma

  • Gloria Peiró
  • Susana Benlloch
  • Laura Sánchez-Tejada
  • Encarna Adrover
  • Enrique Lerma
  • Francisca M. Peiró
  • José Sánchez-Payá
  • F. Ignacio Aranda
Brief Report


Background The predictive value of IGF1R on local recurrence in invasive breast carcinoma (BC) is not well known. Methods In a series of 197 lymph-node negative BC patients treated with breast-conserving surgery and radiation therapy, we performed immunohistochemistry for α-IGF1R, β-IGF1R (phosphorylated/active form) and Estrogen/Progesterone receptors. We further evaluated the IGF1R mRNA expression by quantitative RT-PCR and IGF1R mutations by direct DNA sequencing (exons 19 and 21) in 85 primary BC (42 control cases, 31 with local recurrence and 12 with distant metastasis) and in 31 local recurrences. Unconditional logistic regression analyses were performed to identify risk factors for recurrence. Results Local recurrences were associated with high-grade tumors, PR-negative and low active-IGF1R, which emerged as independent breast relapse predictors by multivariate analysis. Conclusion Patients with early BC treated with lumpectomy and radiation who have low-grade tumors and favorable markers (increased content of active IGF1R and PR-positive) have a low risk of local recurrence. Therefore, do not benefit from a boost dose on the surgical scar.


Early breast carcinoma IGF1R mRNA Mutation 



Supported by Project Grant FIS 03/1411 from the Fondo de Investigación Sanitaria, Ministry of Health (Spain). We thank Cristina Albaladejo, María D. Durán and Estefanía Rojas for their technical assistance; and Doreen Dennecker for the preparation of the manuscript.


  1. 1.
    Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106PubMedGoogle Scholar
  2. 2.
    Early Breast Cancer trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717. doi: 10.1016/S0140-6736(05)66544-0 Google Scholar
  3. 3.
    Livi L, Paiar F, Saieva C et al (2007) Survival and breast relapse in 3834 patients with T1–T2 breast cancer after conserving surgery and adjuvant treatment. Radiother Oncol 82:287–293. doi: 10.1016/j.radonc.2006.11.009 PubMedCrossRefGoogle Scholar
  4. 4.
    Connolly JL, Boyages J, Nixon AJ et al (1998) Predictors of breast recurrence after conservative surgery and radiation therapy for invasive breast cancer. Mod Pathol 11:134–139PubMedGoogle Scholar
  5. 5.
    Peiro G, Bornstein BA, Connolly JL et al (2000) The influence of infiltrating lobular carcinoma on the outcome of patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat 59:49–54. doi: 10.1023/A:1006384407690 PubMedCrossRefGoogle Scholar
  6. 6.
    Neri A, Marrelli D, Rossi S et al (2007) Breast cancer local recurrence: risk factors and prognostic relevance of early time to recurrence. World J Surg 31:36–45. doi: 10.1007/s00268-006-0097-2 PubMedCrossRefGoogle Scholar
  7. 7.
    Yakar S, Leroith D, Brodt P (2005) The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models. Cytokine Growth Factor Rev 16:407–420. doi: 10.1016/j.cytogfr.2005.01.010 PubMedCrossRefGoogle Scholar
  8. 8.
    Adams TE, Epa VC, Garrett TP, Ward CW (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57:1050–1093. doi: 10.1007/PL00000744 PubMedCrossRefGoogle Scholar
  9. 9.
    Werner H, Maor S (2006) The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action. Trends Endocrinol Metab 17:236–242. doi: 10.1016/j.tem.2006.06.007 PubMedCrossRefGoogle Scholar
  10. 10.
    Kato H, Faria TN, Stannard B et al (1994) Essential role of tyrosine residues 1131, 1135, and 1136 of the insulin-like growth factor-I (IGF-I) receptor in IGF-I action. Mol Endocrinol 8:40–50. doi: 10.1210/me.8.1.40 PubMedCrossRefGoogle Scholar
  11. 11.
    Blakesley VA, Kalebic T, Helman LJ et al (1996) Tumorigenic, mitogenic capacities are reduced in transfected fibroblasts expressing mutant insulin-like growth factor (IGF)-I receptors. The role of tyrosine residues 1250 1251, and 1316 in the carboxy-terminus of the IGF-I receptor. Endocrinology 137:410–417. doi: 10.1210/en.137.2.410 PubMedCrossRefGoogle Scholar
  12. 12.
    Hongo A, Yumet G, Resnicoff M et al (1998) Inhibition of tumorigenesis and induction of apoptosis in human tumor cells by the stable expression of a myristylated COOH terminus of the insulin-like growth factor I receptor. Cancer Res 58:2477–2484PubMedGoogle Scholar
  13. 13.
    Brodt P, Fallavollita L, Khatib AM et al (2001) Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit. J Biol Chem 276:33608–33615. doi: 10.1074/jbc.M102754200 PubMedCrossRefGoogle Scholar
  14. 14.
    Turner BC, Haffty BG, Narayanan L et al (1997) Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57:3079–3083PubMedGoogle Scholar
  15. 15.
    Ouban A, Muraca P, Yeatman T, Coppola D (2003) Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol 34:803–808. doi: 10.1016/S0046-8177(03)00291-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Peiro G, Lohse P, Mayr D, Diebold J (2003) Insulin-like growth factor-I receptor and PTEN protein expression in endometrial carcinoma. Correlation with bax and bcl-2 expression, microsatellite instability status, and outcome. Am J Clin Pathol 120:78–85. doi: 10.1309/C1KAH1PRL1UBW798 PubMedCrossRefGoogle Scholar
  17. 17.
    Papa V, Gliozzo B, Clark GM et al (1993) Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res 53:3736–3740PubMedGoogle Scholar
  18. 18.
    Happerfield LC, Miles DW, Barnes DM et al (1997) The localization of the insulin-like growth factor receptor 1 (IGFR-1) in benign and malignant breast tissue. J Pathol 183:412–417 10.1002/(SICI)1096-9896(199712)183:4<412::AID-PATH944>3.0.CO;2-4PubMedCrossRefGoogle Scholar
  19. 19.
    Resnik JL, Reichart DB, Huey K et al (1998) Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res 58:1159–1164PubMedGoogle Scholar
  20. 20.
    Schnarr B, Strunz K, Ohsam J et al (2000) Down-regulation of insulin-like growth factor-I receptor and insulin receptor substrate-1 expression in advanced human breast cancer. Int J Cancer 89:506–513. doi:10.1002/1097-0215(20001120)89:6<506::AID-IJC7>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  21. 21.
    Shimizu C, Hasegawa T, Tani Y et al (2004) Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum Pathol 35:1537–1542. doi: 10.1016/j.humpath.2004.09.005 PubMedCrossRefGoogle Scholar
  22. 22.
    Al Sarakbi W, Chong Y, Williams S et al (2006) The mRNA expression of IGF-1 and IGF-1R in human breast cancer: association with clinico-pathological parameters. J Carcinog 5:16. doi: 10.1186/1477-3163-5-16 PubMedCrossRefGoogle Scholar
  23. 23.
    Chong YM, Colston K, Jiang WG et al (2006) The relationship between the insulin-like growth factor-1 system and the oestrogen metabolising enzymes in breast cancer tissue and its adjacent non-cancerous tissue. Breast Cancer Res Treat 99:275–288. doi: 10.1007/s10549-006-9215-y PubMedCrossRefGoogle Scholar
  24. 24.
    Dupont J, Le Roith D (2001) Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects. Mol Pathol 54:149–154. doi: 10.1136/mp. 54.3.149 PubMedCrossRefGoogle Scholar
  25. 25.
    Chan TW, Pollak M, Huynh H (2001) Inhibition of insulin-like growth factor signaling pathways in mammary gland by pure antiestrogen ICI 182, 780. Clin Cancer Res 7:2545–2554PubMedGoogle Scholar
  26. 26.
    Surmacz E, Bartucci M (2004) Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 23:385–394PubMedGoogle Scholar
  27. 27.
    Ueda S, Tsuda H, Sato K et al (2006) Alternative tyrosine phosphorylation of signaling kinases according to hormone receptor status in breast cancer overexpressing the insulin-like growth factor receptor type 1. Cancer Sci 97:597–604. doi: 10.1111/j.1349-7006.2006.00228.x PubMedCrossRefGoogle Scholar
  28. 28.
    Gee JM, Robertson JF, Gutteridge E et al (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S99–S111. doi: 10.1677/erc.1.01005 PubMedCrossRefGoogle Scholar
  29. 29.
    Bonneterre J, Peyrat JP, Beuscart R, Demaille A (1990) Prognostic significance of insulin-like growth factor 1 receptors in human breast cancer. Cancer Res 50:6931–6935PubMedGoogle Scholar
  30. 30.
    Railo MJ, von Smitten K, Pekonen F (1994) The prognostic value of insulin-like growth factor-I in breast cancer patients. Results of a follow-up study on 126 patients. Eur J Cancer 30A:307–311. doi: 10.1016/0959-8049(94)90247-X PubMedCrossRefGoogle Scholar
  31. 31.
    McShane LM, Altman DG, Sauerbrei W et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235. doi: 10.1007/s10549-006-9242-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410. doi: 10.1111/j.1365-2559.1991.tb00229.x PubMedCrossRefGoogle Scholar
  33. 33.
    Peiro G, Adrover E, Aranda FI et al (2007) Prognostic implications of HER-2 status in steroid receptor-positive, lymph node-negative breast carcinoma. Am J Clin Pathol 127:780–786. doi: 10.1309/FWHEQX6HB9190LVY PubMedCrossRefGoogle Scholar
  34. 34.
    Arpino G, Weiss H, Lee AV et al (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97:1254–1261PubMedCrossRefGoogle Scholar
  35. 35.
    Punglia RS, Morrow M, Winer EP, Harris JR (2007) Local therapy and survival in breast cancer. N Engl J Med 356:2399–2405. doi: 10.1056/NEJMra065241 PubMedCrossRefGoogle Scholar
  36. 36.
    Lerma E, Peiro G, Ramon T et al (2007) Immunohistochemical heterogeneity of breast carcinomas negative for estrogen receptors, progesterone receptors and Her2/neu (basal-like breast carcinomas). Mod Pathol 20:1200–1207. doi: 10.1038/modpathol.3800961 PubMedCrossRefGoogle Scholar
  37. 37.
    Guvakova MA, Surmacz E (1997) Tamoxifen interferes with the insulin-like growth factor I receptor (IGF-IR) signaling pathway in breast cancer cells. Cancer Res 57:2606–2610PubMedGoogle Scholar
  38. 38.
    Voskuil DW, Bosma A, Vrieling A et al (2004) Insulin-like growth factor (IGF)-system mRNA quantities in normal and tumor breast tissue of women with sporadic and familial breast cancer risk. Breast Cancer Res Treat 84:225–233. doi: 10.1023/B:BREA.0000019954.59130.d3 PubMedCrossRefGoogle Scholar
  39. 39.
    O’Connor R, Kauffmann-Zeh A, Liu Y et al (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17:427–435PubMedGoogle Scholar
  40. 40.
    Petley T, Graff K, Jiang W et al (1999) Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses. Horm Metab Res 31:70–76PubMedCrossRefGoogle Scholar
  41. 41.
    Nuyten DS, Kreike B, Hart AA et al (2006) Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res 8:R62. doi: 10.1186/bcr1614 PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  43. 43.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. doi: 10.1056/NEJMoa041588 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Gloria Peiró
    • 1
  • Susana Benlloch
    • 1
  • Laura Sánchez-Tejada
    • 1
  • Encarna Adrover
    • 2
  • Enrique Lerma
    • 3
  • Francisca M. Peiró
    • 4
  • José Sánchez-Payá
    • 5
  • F. Ignacio Aranda
    • 4
  1. 1.Research UnitHospital General Universitari d’AlacantAlacantSpain
  2. 2.Department of Clinical OncologyHospital General Universitari d’AlacantAlacantSpain
  3. 3.Pathology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
  4. 4.Department of PathologyHospital General Universitari d’AlacantAlacantSpain
  5. 5.Department of EpidemiologyHospital General Universitari d’AlacantAlacantSpain

Personalised recommendations