Breast Cancer Research and Treatment

, Volume 108, Issue 2, pp 217–231 | Cite as

Relation of demographic factors, menstrual history, reproduction and medication use to sex hormone levels in postmenopausal women

  • Anne McTiernan
  • LieLing Wu
  • Vanessa M. Barnabei
  • Chu Chen
  • Susan Hendrix
  • Francesmary Modugno
  • Thomas Rohan
  • Frank Z. Stanczyk
  • C. Y. Wang
  • For the WHI Investigators
Clinical Trial


In postmenopausal women, levels of estrogens, androgens, and perhaps prolactin have been related to risk of breast and other hormonal cancers in women. However, the determinants of these hormone concentrations have not been firmly established. Associations among various demographic, menstrual, and reproductive factors, medication use and endogenous sex hormone concentrations (estradiol, free estradiol, estrone, estrone sulfate, testosterone, free testosterone, sex hormone binding globulin, androstenedione, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), dihydrotestosterone, and prolactin) were evaluated in a cross-sectional analysis from a simple random sample of 274 postmenopausal women selected from the Women’s Health Initiative Dietary Modification Trial. In multiple regression analyses on log-transformed hormones, the concentrations of DHEA, and DHEAS were negatively and statistically significantly associated with age (both β = −0.03, P < 0.001, respectively). Estradiol, estrone, DHEA, and free testosterone concentrations were higher in African-American than in non-Hispanic White women, but after multivariate adjustment the associations were statistically significant only for free testosterone (β = 0.38, P = 0.01). Women who had a history of bilateral oophorectomy had a mean 35% lower testosterone concentration compared with women with at least one ovary remaining (β = −0.43, P = 0.002), and lower free testosterone (β = −0.42, P = 0.04) after multivariate adjustment. Women who reported regular use of NSAIDs had higher DHEA concentrations (β = 0.20, P = 0.04) and lower prolactin concentrations (β = −0.18, P = 0.02) compared with non-users. These results suggest that while age, oophorectomy status, and NSAID use may be associated with selected sex hormone concentrations, few menstrual or reproductive factors affect endogenous sex hormones in the postmenopausal period.


Breast cancer Estradiol Estrone Hormones Menopause Postmenopausal Prolactin Sex hormone binding globulin Sex hormones Testosterone 



The WHI program is funded by the National Heart, Lung and Blood Institute, U.S. Department of Health and Human Services.


  1. 1.
    Cook LS, Weiss NS (2000) Endometrial cancer. In: Goldman MB, Hatch MC (eds) Women and health. San Diego, Academic Press, 916–931Google Scholar
  2. 2.
    Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36–47PubMedGoogle Scholar
  3. 3.
    Chubak J, Tworoger S, Yasui Y, Ulrich C, Stanczyk F, McTiernan A (2004) Associations between reproductive and menstrual factors and postmenopausal sex hormone concentrations. Cancer Epidemiol Biomarkers Prev 8:1296–1301Google Scholar
  4. 4.
    Hankinson S, Colditz G, Hunter D, Manson J, Willett W, Stampfer M, Longcope C, Speizer F (1995) Reproductive factors and family history of breast cancer in relation to plasma estrogen and prolactin levels in postmenopausal women in the Nurses’ Health Study (United States). Cancer Causes Control 6:217–224PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia Rodriguez L, Gonzalez-Perez A (2004) Risk of breast cancer among users of aspirin and other anti-inflammatory drugs. Br J Cancer 91(3):525–529PubMedCrossRefGoogle Scholar
  6. 6.
    Harris R, Chlebowski R, Jackson R, Frid D, Ascenseo J, Anderson G, Loar A, Rodabough R, White E, McTiernan A (2003) Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Res 63:6096–6101PubMedGoogle Scholar
  7. 7.
    Terry M, Gammon M, Zhang F, Tawfik H, Teitelbaum S, Britton J, Subbaramaiah K, Dannenberg A, Neugut A (2004) Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk. JAMA 291(20):2433–2440PubMedCrossRefGoogle Scholar
  8. 8.
    Cook N, Lee I, Gaziano J, Gordon D, Ridker P, Manson J, Hennekens C, Buring J (2005) Low-dose aspirin in the primary prevention of cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294(1):47–55PubMedCrossRefGoogle Scholar
  9. 9.
    Jacobs E, Thun M, Connell C, Rodriguez C, Henley S, Feigelson H, Patel A, Flanders W, Calle E (2005) Aspirin and Other Nonsteroidal Anti-inflammatory Drugs and Breast Cancer Incidence in a Large U.S. Cohort. Cancer Epidemiol Biomarkers Prev 14:261–264PubMedCrossRefGoogle Scholar
  10. 10.
    Marshall S, Bernstein L, Anton-Culver H, Deapen D, Horn-Ross P, Mohrenweiser H, Peel D, Pinder R, Purdie D, Reynolds P, Stram D, West D, Wright W, Ziogas A, Ross R (2005) Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst 97(11):805–812PubMedCrossRefGoogle Scholar
  11. 11.
    Endogenous Hormones and Breast Cancer Collaborative Group (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616Google Scholar
  12. 12.
    Hankinson S, Willett W, Michaud D, Manson J, Colditz G, Longcope C, Rosner B, Speizer F (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91(7):629–634PubMedCrossRefGoogle Scholar
  13. 13.
    Tworoger S, Eliassen A, Rosner B, Sluss P, Hankinson S (2004) Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res 64(18):6814–6819PubMedCrossRefGoogle Scholar
  14. 14.
    Manjer J, Johansson R, Berglund G, Janzon L, Kaaks R, Agren A, Lenner P (2003) Postmenopausal breast cancer risk in relation to sex steroid hormones, prolactin and SHBG (Sweden). Cancer Causes Control 14(7):599–607PubMedCrossRefGoogle Scholar
  15. 15.
    Lukanova A, Lundin E, Micheli A, Arslan A, Ferrari P, Rinaldi S, Krogh V, Lenner P, Shore R, Biessy C, Muti P, Riboli E, Koenig K, Levitz M, Stattin P, Berrino F, Hallmans G, Kaaks R, Toniolo P, Zeleniuch-Jacquotte A (2004) Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer 108(3):425–432PubMedCrossRefGoogle Scholar
  16. 16.
    Boyapati S, Shu X, Gao Y, Dai Q, Yu H, Cheng J, Jin F, Zheng W (2004) Correlation of blood sex steroid hormones with body size, body fat distribution, and other known risk factors for breast cancer in post-menopausal Chinese women. Cancer Causes Control 15(3):305–311PubMedCrossRefGoogle Scholar
  17. 17.
    McTiernan A, Rajan KB, Tworoger SS, Irwin M, Bernstein L, Baumgartner R, Gilliland F, Stanczyk FZ, Yasui Y, Ballard-Barbash R (2003) Adiposity and sex hormones in postmenopausal breast cancer survivors. J Clin Oncol 21(10):1961–1966PubMedCrossRefGoogle Scholar
  18. 18.
    Verkasalo PK, Thomas HV, Appleby PN, Davey GK, Key TJ (2001) Circulating levels of sex hormones and their relation to risk factors for breast cancer: a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom). Cancer Causes Control 12(1):47–59PubMedCrossRefGoogle Scholar
  19. 19.
    McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F, Perri MG, Stanczyk FZ, Van Horn L, Wang CY (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring) 14(9):1662–1677CrossRefGoogle Scholar
  20. 20.
    Meldrum D, Davidson D, Tateryn I, Judd H (1981) Changes in circulating steroids with aging in postmenopausal women. Obstet Gynecol 57:624–628PubMedGoogle Scholar
  21. 21.
    Siiteri PK (1987) Adipose tissue as a source of hormones. Am J Clin Nutr 45(1 Suppl):277–282PubMedGoogle Scholar
  22. 22.
    Judd HL, Shamonki IM, Frumar AM, Lagasse LD (1982) Origin of serum estradiol in postmenopausal women. Obstet Gynecol 59(6):680–686PubMedGoogle Scholar
  23. 23.
    Siiteri PK, Murai JT, Hammond GL, Nisker JA, Raymoure WJ, Kuhn RW (1982) The serum transport of steroid hormones. Recent Prog Horm Res 38:457–510PubMedGoogle Scholar
  24. 24.
    Ritenbaugh C, Patterson R, Chlebowski R, Caan B, Fels-Tinker L, Howard B, Ockene J (2003) The women’s health initiative dietary modification trial: overview and baseline characteristics of participants. Ann Epidemiol 13:S87-S97PubMedCrossRefGoogle Scholar
  25. 25.
    The Women’s Health Initiative Study Group (1998) Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials 19(1):61–109CrossRefGoogle Scholar
  26. 26.
    Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller LH, Ockene JK, Margolis KL, Limacher MC, Manson JE, Parker LM, Paskett E, Phillips L, Robbins J, Rossouw JE, Sarto GE, Shikany JM, Stefanick ML, Thomson CA, Van Horn L, Vitolins MZ, Wactawski-Wende J, Wallace RB, Wassertheil-Smoller S, Whitlock E, Yano K, Adams-Campbell L, Anderson GL, Assaf AR, Beresford SA, Black HR, Brunner RL, Brzyski RG, Ford L, Gass M, Hays J, Heber D, Heiss G, Hendrix SL, Hsia J, Hubbell FA, Jackson RD, Johnson KC, Kotchen JM, LaCroix AZ, Lane DS, Langer RD, Lasser NL, Henderson MM (2006) Low-fat dietary pattern and risk of invasive breast cancer: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295(6):629–642PubMedCrossRefGoogle Scholar
  27. 27.
    Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9(3):178–187PubMedCrossRefGoogle Scholar
  28. 28.
    Langer R, White E, Lewis C, Kotchen J, Hendrix S, Trevisan M (2003) The Women’s Health Initiative observational study: baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol 13:S107-S121PubMedCrossRefGoogle Scholar
  29. 29.
    McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N, Ockene J (2003) Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA 290(10):1331–1336PubMedCrossRefGoogle Scholar
  30. 30.
    Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84(10):3666–3672PubMedCrossRefGoogle Scholar
  31. 31.
    Rinaldi S, Geay A, Dechaud H, Biessy C, Zeleniuch-Jacquotte A, Akhmedkhanov A, Shore RE, Riboli E, Toniolo P, Kaaks R (2002) Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol Biomarkers Prev 11(10 Pt 1):1065–1071PubMedGoogle Scholar
  32. 32.
    DiLuigi L, Guidetti L, Romanelli F, Baldari C, Conte D (2001) Acetylsalicylic acid inhibits the pituitary response to exercise-related stress in humans. Med Sci Sports Exerc 33(12):2029–2035CrossRefGoogle Scholar
  33. 33.
    Brueggemeier R, Quinn A, Parrett M, Joarder F, Harris R, Robertson F (1999) Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140:27–35PubMedCrossRefGoogle Scholar
  34. 34.
    Zhao Y, Agarwal V, Mendelson C, Simpson E (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137:5739–5742PubMedCrossRefGoogle Scholar
  35. 35.
    Toniolo P, Koenig K, Pasternack B, Banerjee S, Rosenberg C, Shore R, Strax P, Levitz M (1994) Reliability of measurements of total, protein-bound, and unbound estradiol in serum. Cancer Epidemiol Biomarkers Prev 3(1):47–50PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anne McTiernan
    • 1
    • 3
    • 4
  • LieLing Wu
    • 1
  • Vanessa M. Barnabei
    • 5
  • Chu Chen
    • 2
  • Susan Hendrix
    • 6
  • Francesmary Modugno
    • 7
    • 8
  • Thomas Rohan
    • 9
  • Frank Z. Stanczyk
    • 10
  • C. Y. Wang
    • 1
  • For the WHI Investigators
  1. 1.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Department of Epidemiology, School of Public HealthUniversity of WashingtonSeattleUSA
  4. 4.Department of Medicine, School of MedicineUniversity of WashingtonSeattleUSA
  5. 5.Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeUSA
  6. 6.Department of Obstetric and GynecologyWayne State UniversityDetroitUSA
  7. 7.University of Pittsburgh Graduate School of Public HealthPittsburgUSA
  8. 8.University of Pittsburgh Cancer InstitutePittsburgUSA
  9. 9.Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxUSA
  10. 10.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations