Breast Cancer Research and Treatment

, Volume 104, Issue 1, pp 67–74 | Cite as

The 3′ untranslated region C > T polymorphism of prohibitin is a breast cancer risk modifier in Polish women carrying a BRCA1 mutation

  • Anna Jakubowska
  • Jacek Gronwald
  • Bohdan Górski
  • Tomasz Huzarski
  • Tomasz Byrski
  • Axel Benner
  • Jan Lubiński
  • Rodney J. Scott
  • Ute Hamann


The variable penetrance of breast cancer in BRCA1 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. The C to T transition in the 3′ untranslated region of the prohibitin (PHB) gene alters mRNA function and has been shown to be associated with an increased breast cancer risk among young North-American women who have one first-degree relative with breast cancer. To investigate whether the PHB 3′UTR polymorphism acts as a modifier of hereditary breast cancer risk we performed a case-control study among female BRCA1 mutation carriers, which included 258 cases and 258 controls who were unaffected by ovarian cancer, in situ breast carcinoma or any other type of cancer. Controls were matched to cases by year of birth and BRCA1 mutation (5382insC, 300 T > G, 4153delA). Genotyping analysis was performed using RFLP-PCR. Odds ratios (OR) were calculated using conditional and penalised univariable and multivariable logistic regression. Multivariable penalised logistic regression revealed CT (ORadj, 2.03; 95% CI, 1.17–3.59) and combined CT + TT (ORadj, 2.12; 95% CI, 1.23–3.70) genotypes as significant modifiers of breast cancer risk. Breast cancer risk did not differ between carriers of the 300 T > G and 5382insC mutation. Our results suggest that the PHB 3′UTR T allele increases the risk of breast cancer in patients who are already at increased risk of disease.


Prohibitin 3′untranslated region polymorphism Risk modifier Hereditary breast cancer BRCA1 carriers 



We are grateful to all women for their participation in this study. We thank Antje Seidel-Renkert and Michael Gilbert for expert technical assistance. This work was supported by the Deutsches Krebsforschungszentrum, Heidelberg. Anna Jakubowska is a guest researcher from the Pomeranian Medical University, Szczecin, Poland supported by a fellowship from the DKFZ. Jacek Gronwald was supported by a Yamagiwa-Yoshida Memorial UICC International Cancer Study Grant.


  1. 1.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Birch JM, Lindblom A, Stoppa-Lyonnet D, Bignon Y, Borg A, Hamann U, Haites N, Scott RJ, Maugard CM, Vasen H, Seitz S, Cannon-Albright LA, Schofield A, Zelada-Hedman M, the Breast Cancer Linkage Consortium (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689Google Scholar
  2. 2.
    King MC, Marks JH, Mandell JB for New York Breast Cancer Study Group (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646Google Scholar
  3. 3.
    Claus EB, Risch N, Thompson WD (1994) Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73:643–651PubMedCrossRefGoogle Scholar
  4. 4.
    Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271PubMedGoogle Scholar
  5. 5.
    Gorski B, Byrski T, Huzarski T, Jakubowska A, Menkiszak J, Gronwald J, Pluzanska A, Bebenek M, Fischer-Maliszewska L, Grzybowska E, Narod SA, Lubinski J (2000) Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. Am J Hum Genet 66:1963–1968PubMedCrossRefGoogle Scholar
  6. 6.
    Gorski B, Jakubowska A, Huzarski T, Byrski T, Gronwald J, Grzybowska E, Mackiewicz A, Stawicka M, Bebenek M, Sorokin D, Fiszer-Maliszewska L, Haus O, Janiszewska H, Niepsuj S, Gozdz S, Zaremba L, Posmyk M, Pluzanska M, Kilar E, Czudowska D, Wasko B, Miturski R, Kowalczyk JR, Urbanski K, Szwiec M, Koc J, Debniak B, Rozmiarek A, Debniak T, Cybulski C, Kowalska E, Toloczko-Grabarek A, Zajaczek S, Menkiszak J, Medrek K, Masojc B, Mierzejewski M, Narod SA, Lubinski J (2004) A high proportion of founder BRCA1 mutations in Polish breast cancer families. Int J Cancer 110:683–686PubMedCrossRefGoogle Scholar
  7. 7.
    White JJ, Ledbetter DH, Eddy RL Jr, Shows TB, Stewart DA, Nuell MJ, Friedman V, Wood CM, Owens GA, McClung JK, Danner DB, Morton CC (1991) Assignment of the human prohibitin gene (PHB) to chromosome 17 and identification of a DNA polymorphism. Genomics 11:228–230PubMedCrossRefGoogle Scholar
  8. 8.
    Nagai MA, Yamamoto L, Salaorni S, Pacheco MM, Brentani MM, Barbosa EM, Brentani RR, Mazoyer S, Smith SA, Ponder BA, Mulligan LM (1994) Detailed deletion mapping of chromosome segment 17q12-21 in sporadic breast tumours. Genes Chromosomes Cancer 11:58–62PubMedCrossRefGoogle Scholar
  9. 9.
    Wang S, Nath N, Adlam M, Chellappan S (1999) Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 18:3501–3510PubMedCrossRefGoogle Scholar
  10. 10.
    Wang S, Nath N, Fusaro G, Chellappan S (1999) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19:7447–7460PubMedGoogle Scholar
  11. 11.
    Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861PubMedCrossRefGoogle Scholar
  12. 12.
    Manjeshwar S, Branam DE, Lerner MR, Brackett DJ, Jupe ER (2003) Tumor suppression by the prohibitin gene 3′ untranslated region RNA in human breast cancer. Cancer Res 63:5251–5256PubMedGoogle Scholar
  13. 13.
    Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell’Orco RT (1996) Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 3′ untranslated region mutations. Cell Growth Differ 7:871–878PubMedGoogle Scholar
  14. 14.
    Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell’Orco RT (1996) The 3′ untranslated region of prohibitin and cellular immortalization. Exp Cell Res 224:128–135PubMedCrossRefGoogle Scholar
  15. 15.
    Jupe ER, Badgett AA, Neas BR, Craft MA, Mitchell DS, Resta R, Mulvihill JJ, Aston CE, Thompson LF (2001) Single nucleotide polymorphism in prohibitin 39 untranslated region and breast-cancer susceptibility. Lancet 357:1588–1589PubMedCrossRefGoogle Scholar
  16. 16.
    Spurdle AB, Hopper JL, Chen X, McCredie MR, Giles GG, Newman B, Chenevix-Trench G (2002) Prohibitin 3′ untranslated region polymorphism and breast cancer risk in Australian women. Lancet 360:925–926PubMedCrossRefGoogle Scholar
  17. 17.
    Campbell IG, Allen J, Eccles DM (2003) Prohibitin 3′ untranslated region polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:1273–1274PubMedGoogle Scholar
  18. 18.
    Lahiri DK, Schnabel B (1993) DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet 31:321–328PubMedCrossRefGoogle Scholar
  19. 19.
    Agresti A (1990) Categorical data analysis. Wiley, New York, pp 59–67Google Scholar
  20. 20.
    Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419PubMedCrossRefGoogle Scholar
  21. 21.
    Manjeshwar S, Lerner MR, Zang XP, Branam DE, Pento JT, Lane MM, Lightfoot SA, Brackett DJ, Jupe ER (2004) Expression of prohibitin 3′ untranslated region suppressor RNA alters morphology and inhibits motility of breast cancer cells. J Mol Histol 35:639–646PubMedCrossRefGoogle Scholar
  22. 22.
    Gorski B, Menkiszak J, Gronwald J, Lubinski J, Narod SA (2004) A protein truncating BRCA1 allele with a low penetrance of breast cancer. J Med Genet 41:e130Google Scholar
  23. 23.
    Gorski B, Cybulski C, Huzarski T, Byrski T, Gronwald J, Jakubowska A, Stawicka M, Gozdecka-Grodecka S, Szwiec M, Urbanski K, Mitus J, Marczyk E, Dziuba J, Wandzel P, Surdyka D, Haus O, Janiszewska H, Debniak T, Toloczko-Grabarek A, Medrek K, Masojc B, Mierzejewski M, Kowalska E, Narod SA, Lubinski J (2005) Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat 92:19–24PubMedCrossRefGoogle Scholar
  24. 24.
    King MC, Wieand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B (2001) National surgical adjuvant breast and bowel project. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: national surgical adjuvant breast and bowel project (NSABP-P1) breast cancer prevention trial. JAMA 286:2251–2256PubMedCrossRefGoogle Scholar
  25. 25.
    Narod SA, Brunet JS, Ghadirian P, Robson M, Heimdal K, Neuhausen SL, Stoppa-Lyonnet D, Lerman C, Pasini B, de los Rios P, Weber B, Lynch H (2000) Hereditary breast cancer clinical study group. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356:1876–1881PubMedCrossRefGoogle Scholar
  26. 26.
    Hartmann LC, Schaid DJ, Woods JE, Crotty TP, Myers JL, Arnold PG, Petty PM, Sellers TA, Johnson JL, McDonnell SK, Frost MH, Jenkins RB (1999) Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340:77–84PubMedCrossRefGoogle Scholar
  27. 27.
    Hartmann LC, Sellers TA, Schaid DJ, Frank TS, Soderberg CL, Sitta DL, Frost MH, Grant CS, Donohue JH, Woods JE, McDonnell SK, Vockley CW, Deffenbaugh A, Couch FJ, Jenkins RB (2001) Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 93:1633–1637PubMedCrossRefGoogle Scholar
  28. 28.
    Meijers-Heijboer H, van Geel B, van Putten WL, Henzen-Logmans SC, Seynaeve C, Menke-Pluymers MB, Bartels CC, Verhoog LC, van den Ouweland AM, Niermeijer MF, Brekelmans CT, Klijn JG (2001) Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 345:159–164PubMedCrossRefGoogle Scholar
  29. 29.
    Rebbeck TR, Friebel T, Lynch HT, Neuhausen SL, van’t Veer L, Garber JE, Evans GR, Narod SA, Isaacs C, Matloff E, Daly MB, Olopade OI, Weber BL (2004) Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 22:1055–1062PubMedCrossRefGoogle Scholar
  30. 30.
    Rebbeck TR, Lynch HT, Neuhausen SL, Narod SA, Van’t Veer L, Garber JE, Evans G, Isaacs C, Daly MB, Matloff E, Olopade OI, Weber BL, Prevention and Observation of Surgical End Points Study Group (2002) Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346:1616–1622Google Scholar
  31. 31.
    Kauff ND, Satagopan JM, Robson ME, Scheuer L, Hensley M, Hudis CA, Ellis NA, Boyd J, Borgen PI, Barakat RR, Norton L, Castiel M, Nafa K, Offit K (2002) Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346:1609–1615PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Anna Jakubowska
    • 1
    • 2
  • Jacek Gronwald
    • 1
  • Bohdan Górski
    • 1
  • Tomasz Huzarski
    • 1
  • Tomasz Byrski
    • 1
  • Axel Benner
    • 3
  • Jan Lubiński
    • 1
  • Rodney J. Scott
    • 4
  • Ute Hamann
    • 2
  1. 1.Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
  2. 2.Division of Molecular Genome Analysis, Molecular Genetics of Breast CancerGerman Cancer Research CenterHeidelbergGermany
  3. 3.Central Unit Biostatistics, German Cancer Research CenterHeidelbergGermany
  4. 4.Discipline of Medical Genetics, School of Biomedical SciencesUniversity of Newcastle, and the Hunter Medical Research InstituteNew LambtonAustralia

Personalised recommendations