Magnetic resonance imaging of breast lesions—a pathologic correlation

  • Gary M. K. Tse
  • Benjaporn Chaiwun
  • Ka-Tak Wong
  • David K. Yeung
  • Amy L. M. Pang
  • Alice P. Y. Tang
  • Humairah S. Cheung


Magnetic resonance imaging of the breast is useful in assessing breast lesions. An understanding of the pathologic characteristics of the tumors may help to understand these magnetic resonance imaging observations.

Large lesional size (>10 mm), ill-defined margin, and irregular outlines are associated with malignancy. These correlate with the pathological features of breast tumor, characterized by rapid growth rate, large size, and infiltrative growth pattern, invasion into stroma resulting in desmoplasia, and hence irregular outline and margin. The detection and estimation of tumor extent of invasive lobular carcinoma is problematic, even with magnetic resonance imaging, which is considered the most sensitivity. This inaccuracy likely derives from the characteristic linear, single cells infiltration growth pattern of the tumor, which is also often underestimated by clinical examination. Estimation of tumor extent after neoadjuvant chemotherapy is also essential but problematic by imaging, as the shrunken tumor becomes fibrotic, with stromal hyalinization, diminished microvasculature and tumor break up causing size underestimation. Non-enhancement of breast tumors occurs in about 8% of cases correlates with diffuse growth pattern, particularly of infiltrative lobular carcinoma. The observation of disproportionately high non-enhancing ductal carcinoma in situ remains an enigma. Finally, early rim enhancement correlates with small cancer nests, low ratio of peripheral to central fibrosis and high ratio of peripheral to central microvessel density. These may be related to increased vascular endothelial growth factor mediated increased microvessel density as well as increased permeability, which manifest as increased rapid contrast uptake and dissipation.


Breast Cancer Magnetic resonance imaging 


  1. 1.
    Heywang SH, Hahn D, Schmidt H et al (1986) MRI imaging of the breast using gadolinium-DTPA. J Comput Assist Tomogr 10:199–204PubMedCrossRefGoogle Scholar
  2. 2.
    Bone B, Pentek Z, Perbeck L et al (1997) Diagnostic accuracy of mammography and contrast-enhanced MR imaging in 238 histologically verified breast lesions. Acta Radiol 38:489–496PubMedGoogle Scholar
  3. 3.
    Stomper PC, Winston JS, Herman S et al (1997) Angiogenesis and dynamic MR imaging gadolinium enhancement of malignant and benign breast lesions. Breast Cancer Res Treat 45:39–46PubMedCrossRefGoogle Scholar
  4. 4.
    Boetes C, Barentsz JO, Mus RD et al (1994) MR characterization of suspicious breast lesions with a gadolinium-enhanced TurboFLASH subtraction technique. Radiology 193:777–781PubMedGoogle Scholar
  5. 5.
    Heiberg EV, Perman WH, Herrmann VM et al (1996) Dynamic sequential 3D gadolinium-enhanced MRI of the whole breast. Magn Reson Imaging 14:337–348PubMedCrossRefGoogle Scholar
  6. 6.
    Muller-Schimpfle M, Stoll P, Stern W et al (1997) Do mammography, sonography, and MR mammography have a diagnostic benefit compared with mammography and sonography? AJR Am J Roentgenol 168:1323–1329PubMedGoogle Scholar
  7. 7.
    Heywang-Kobrunner SH, Viehweg P, Heinig A et al (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108PubMedCrossRefGoogle Scholar
  8. 8.
    Morris EA, Schwartz LH, Dershaw DD et al (1997) MR imaging of the breast in patients with occult primary breast carcinoma. Radiology 205:437–440PubMedGoogle Scholar
  9. 9.
    Boetes C, Mus RD, Holland R et al (1995) Breast tumors: comparative accuracy of MR imaging relative to mammography and US for demonstrating extent. Radiology 197:743–747PubMedGoogle Scholar
  10. 10.
    Kepple J, Layeeque R, Klimberg VS et al (2005) Correlation of magnetic resonance imaging and pathologic size of infiltrating lobular carcinoma of the breast. Am J Surg 190:623–627PubMedCrossRefGoogle Scholar
  11. 11.
    Rieber A, Merkle E, Bohm W et al (1997) MRI of histologically confirmed mammary carcinoma: clinical relevance of diagnostic procedures for detection of multifocal or contralateral secondary carcinoma. J Comput Assist Tomogr 21:773–779PubMedCrossRefGoogle Scholar
  12. 12.
    Orel SG, Schnall MD, Powell CM et al (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196:115–122PubMedGoogle Scholar
  13. 13.
    Mumtaz H, Hall-Craggs MA, Davidson T et al (1997) Staging of symptomatic primary breast cancer with MR imaging. AJR Am J Roentgenol 169:417–424PubMedGoogle Scholar
  14. 14.
    Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888PubMedGoogle Scholar
  15. 15.
    Muuller RD, Barkhausen J, Sauerwein W et al (1998) Assessment of local recurrence after breast-conserving therapy with MRI. J Comput Assist Tomogr 22:408–412PubMedCrossRefGoogle Scholar
  16. 16.
    Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179:171–178PubMedGoogle Scholar
  17. 17.
    Siegmann KC, Muller-Schimpfle M, Schick F et al (2002) MR imaging-detected breast lesions: histopathologic correlation of lesion characteristics and signal intensity data. AJR Am J Roentgenol 178:1403–1409PubMedGoogle Scholar
  18. 18.
    Elston C, Ellis IO (2000) Assessment of histological grade. In: Elston CW, Ellis IO (eds), Symmets W (Emeritus Editor) The breast, systemic pathology, Col 13. Churchill Livingston, Edinburgh, pp 365–384Google Scholar
  19. 19.
    Walker RA, Camplejohn RS (1986) DNA flow cytometry of human breast carcinomas and its relationship to transferrin and epidermal growth factor receptors. J Pathol 150:37–42PubMedCrossRefGoogle Scholar
  20. 20.
    Bouzubar N, Walker KJ, Griffiths K et al (1989) Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer 59:943–947PubMedGoogle Scholar
  21. 21.
    Fechner RE (1987) Fibroadenoma and related lesions. In: Page DL, Anderson TJ (eds) Diagnostic histopathology of the breast. Churchill Livingstone, Edinburgh, pp 72–85Google Scholar
  22. 22.
    Tsang WY, Chan JK et al (1996) Endocrine ductal carcinoma in situ (E-DCIS) of the breast: a form of low-grade DCIS with distinctive clinicopathologic and biologic characteristics. Am J Surg Pathol 20:921–943PubMedCrossRefGoogle Scholar
  23. 23.
    Tse GM, Ma TK, Chu WC et al (2004) Neuroendocrine differentiation in pure type mammary mucinous carcinoma is associated with favorable histologic and immunohistochemical parameters. Mod Pathol 17:568–572PubMedCrossRefGoogle Scholar
  24. 24.
    Nassar H, Qureshi H, Volkanadsay N et al (2006) Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol 30:501–507PubMedCrossRefGoogle Scholar
  25. 25.
    Orel SG, Schnall MD, LiVolsi VA et al (1994) Suspicious breast lesions: MR imaging with radiologic–pathologic correlation. Radiology 190:485–493PubMedGoogle Scholar
  26. 26.
    Weinreb JC, Newstead G (1995) MR imaging of the breast. Radiology 196:593–610PubMedGoogle Scholar
  27. 27.
    Krecke KN, Gisvold JJ (1993) Invasive lobular carcinoma of the breast: mammographic findings and extent of disease at diagnosis in 184 patients. AJR Am J Roentgenol 161:957–960PubMedGoogle Scholar
  28. 28.
    Davis PL, Staiger MJ, Harris KB et al (1996) Breast cancer measurements with magnetic resonance imaging, ultrasonography, and mammography. Breast Cancer Res Treat 37:1–9PubMedCrossRefGoogle Scholar
  29. 29.
    Paramagul CP, Helvie MA, Adler DD (1995) Invasive lobular carcinoma: sonographic appearance and role of sonography in improving diagnostic sensitivity. Radiology 195:231–234PubMedGoogle Scholar
  30. 30.
    Butler RS, Venta LA, Wiley EL et al (1999) Sonographic evaluation of infiltrating lobular carcinoma. AJR Am J Roentgenol 172:325–330PubMedGoogle Scholar
  31. 31.
    Kepple J, Layeeque R, Klimberg VS et al (2005) Correlation of magnetic resonance imaging and pathologic size of infiltrating lobular carcinoma of the breast. Am J Surg 190:623–627PubMedCrossRefGoogle Scholar
  32. 32.
    Boetes C, Veltman J, van Die L et al (2004) The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat 86:31–37PubMedCrossRefGoogle Scholar
  33. 33.
    AJCC (2002) Cancer staging handbook, 6th edn. Springer, New York, pp 255–282Google Scholar
  34. 34.
    Qayyum A, Birdwell RL, Daniel BL et al (2002) MR imaging features of infiltrating lobular carcinoma of the breast: histopathologic correlation. AJR Am J Roentgenol 178:1227–1232PubMedGoogle Scholar
  35. 35.
    Page DL, Anderson TJ, Sakamoto G (1987) Infiltrating carcinoma: major histological types. In: Page DL, Anderson TJ (eds) Diagnostic histopathology of the breast. Churchill Livingstone, Edinburgh, pp 193–235Google Scholar
  36. 36.
    Bonadonna G, Veronesi U, Brambilla C et al (1990) Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst 82:1539–1545PubMedCrossRefGoogle Scholar
  37. 37.
    Calais G, Berger C, Descamps P et al (1994) Conservative treatment feasibility with induction chemotherapy, surgery, and radiotherapy for patients with breast carcinoma larger than 3 cm. Cancer 74:1283–1288PubMedCrossRefGoogle Scholar
  38. 38.
    Cocconi G, Di Blasio B, Alberti G et al (1984) Problems in evaluating response of primary breast cancer to systemic therapy. Breast Cancer Res Treat 4:309–313PubMedCrossRefGoogle Scholar
  39. 39.
    Segel MC, Paulus DD, Hortobagyi GN (1988) Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy. Radiology 169:49–54PubMedGoogle Scholar
  40. 40.
    Partridge SC, Gibbs JE, Lu Y et al (2002) Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol 179:1193–1199PubMedGoogle Scholar
  41. 41.
    Esserman L, Kaplan E, Partridge S et al (2001) MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol 8:549–559PubMedCrossRefGoogle Scholar
  42. 42.
    Delille JP, Slanetz PJ, Yeh ED et al (2003) Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: noninvasive monitoring with functional MR imaging pilot study. Radiology 228:63–69 (Epub 2003 May 29)PubMedCrossRefGoogle Scholar
  43. 43.
    Yeh E, Slanetz P, Kopans DB, Rafferty E et al (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol 184:868–877PubMedGoogle Scholar
  44. 44.
    Dao TH, Rahmouni A, Campana F (1993) Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 187:751–755PubMedGoogle Scholar
  45. 45.
    Wasser K, Sinn HP, Fink C et al (2003) Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy. Eur Radiol 13:1213–1223 (Epub 2002 Nov 30)PubMedGoogle Scholar
  46. 46.
    Elston CW, Ellis IO, Pinder SE (2000) Effects of treatment. In: Elston CW, Ellis IO (eds), Symmets W (Emeritus Editor) The breast, systemic pathology, Col 13. Churchill Livingston, Edinburgh, pp 463–476Google Scholar
  47. 47.
    Knopp MV, Brix G, Junkermann HJ et al (1994) MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging Clin N Am 2:633–658PubMedGoogle Scholar
  48. 48.
    Harms SE, Flamig DP, Hesley KL et al (1993) Fat-suppressed three-dimensional MR imaging of the breast. Radiographics 13:247–267PubMedGoogle Scholar
  49. 49.
    Bone B, Aspelin P, Bronge L et al (1996) Sensitivity and specificity of MR mammography with histopathological correlation in 250 breasts. Acta Radiol 37:208–213PubMedCrossRefGoogle Scholar
  50. 50.
    Gilles R, Guinebretiere JM, Lucidarme O et al (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631PubMedGoogle Scholar
  51. 51.
    Boetes C, Strijk SP, Holland R et al (1997) False-negative MR imaging of malignant breast tumors. Eur Radiol 7:1231–1234PubMedCrossRefGoogle Scholar
  52. 52.
    Teifke A, Hlawatsch A, Beier T, Werner Vomweg T, Schadmand S et al (2002) Undetected malignancies of the breast: dynamic contrast-enhanced MR imaging at 1.0 T. Radiology 224:881–888PubMedCrossRefGoogle Scholar
  53. 53.
    Ghai S, Muradali D, Bukhanov K et al (2005) Nonenhancing breast malignancies on MRI: sonographic and pathologic correlation. AJR Am J Roentgenol 185:481–487PubMedGoogle Scholar
  54. 54.
    Hansen S, Grabau DA, Sorensen FB et al (2006) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6:139–146Google Scholar
  55. 55.
    Chhieng DC, Tabbara SO, Marley EF et al (2003) Microvessel density and vascular endothelial growth factor expression in infiltrating lobular mammary carcinoma. Breast J 9:200–207PubMedCrossRefGoogle Scholar
  56. 56.
    Morphopoulos G, Pearson M, Ryder WD et al (1996) Tumour angiogenesis as a prognostic marker in infiltrating lobular carcinoma of the breast. J Pathol 180:44–49PubMedCrossRefGoogle Scholar
  57. 57.
    Komatsu S, Lee CJ, Hosokawa Y, Ichikawa D et al (2004) Comparison of intraductal spread on dynamic contrast-enhanced MRI with clinicopathologic features in breast cancer. Jpn J Clin Oncol 34:515–518PubMedCrossRefGoogle Scholar
  58. 58.
    Ikeda O, Nishimura R, Miyayama H et al (2004) Magnetic resonance evaluation of the presence of an extensive intraductal component in breast cancer. Acta Radiol 45:721–725PubMedCrossRefGoogle Scholar
  59. 59.
    Cao Y, Paner GP, Kahn LB et al (2004) Noninvasive carcinoma of the breast: angiogenesis and cell proliferation. Arch Pathol Lab Med 128:893–896PubMedGoogle Scholar
  60. 60.
    Ruiz A, Almenar S, Cerda M et al (2002) Ductal carcinoma in situ of the breast: a comparative analysis of histology, nuclear area, ploidy, and neovascularization provides differentiation between low- and high-grade tumors. Breast J 8:139–144PubMedCrossRefGoogle Scholar
  61. 61.
    Guidi AJ, Schnitt SJ, Fischer L et al (1997) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 80:1945–1953PubMedCrossRefGoogle Scholar
  62. 62.
    Weinreb JC, Newstead (1995) G.MR imaging of the breast. Radiology 196:593–610PubMedGoogle Scholar
  63. 63.
    Rubens D, Totterman S, Chacko AK et al (1991) Gadopentetate dimeglumine-enhanced chemical-shift MR imaging of the breast. AJR Am J Roentgenol 157:267–270PubMedGoogle Scholar
  64. 64.
    Kerslake RW, Carleton PJ, Fox JN et al (1995) Dynamic gradient-echo and fat-suppressed spin-echo contrast-enhanced MRI of the breast. Clin Radiol 50:440–454PubMedCrossRefGoogle Scholar
  65. 65.
    Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110PubMedGoogle Scholar
  66. 66.
    Matsubayashi R, Matsuo Y, Edakuni G et al (2000) Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: correlation of MR findings with histologic features and expression of growth factors. Radiology 217:841–848PubMedGoogle Scholar
  67. 67.
    Ahlgren J, Risberg B, Villman K et al (2002) Angiogenesis in invasive breast carcinoma – a prospective study of tumour heterogeneity. Eur J Cancer 38:64–69PubMedCrossRefGoogle Scholar
  68. 68.
    Kato T, Kameoka S, Kimura T et al (2001) Angiogenesis as a predictor of long-term survival for 377 Japanese patients with breast cancer. Breast Cancer Res Treat 70:65–74PubMedCrossRefGoogle Scholar
  69. 69.
    Santinelli A, Baccarini M, Colanzi P et al (2000) Microvessel quantitation in intraductal and early invasive breast carcinomas. Anal Quant Cytol Histol 22:277–284PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Gary M. K. Tse
    • 1
  • Benjaporn Chaiwun
    • 4
  • Ka-Tak Wong
    • 2
  • David K. Yeung
    • 3
  • Amy L. M. Pang
    • 2
  • Alice P. Y. Tang
    • 5
  • Humairah S. Cheung
    • 6
  1. 1.Department of Anatomical and Cellular PathologyPrince of Wales Hospital, The Chinese University of Hong KongShatin, NTHong Kong
  2. 2.Diagnostic Radiology and Organ ImagingPrince of Wales Hospital, The Chinese University of Hong KongShatinHong Kong
  3. 3.Diagnostic Radiology and Organ ImagingPrince of Wales Hospital, The Chinese University of Hong KongShatinHong Kong
  4. 4.Department of PathologyChiang Mai UniversityChiang MaiThailand
  5. 5.Department of RadiologyNorth District HospitalFanlingHong Kong
  6. 6.Department of RadiologyInternational Islamic UniversityKuantanMalaysia

Personalised recommendations