Advertisement

Breast Cancer Research and Treatment

, Volume 99, Issue 1, pp 9–17 | Cite as

Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients

  • Sarah Park
  • Chikako Shimizu
  • Tatsu Shimoyama
  • Masayuki Takeda
  • Masashi Ando
  • Tsutomu Kohno
  • Noriyuki Katsumata
  • Yoon-Koo Kang
  • Kazuto Nishio
  • Yasuhiro  Fujiwara
Article

Summary

Drug resistance is a major obstacle to the successful chemotherapy. Several ATP-binding cassette (ABC) transporters including ABCB1, ABCC1 and ABCG2 have been known to be important mediators of chemoresistance. Using oligonucleotide microarrays (HG-U133 Plus 2.0; Affymetrix), we analyzed the ABC transporter gene expression profiles in breast cancer patients who underwent sequential weekly paclitaxel/FEC (5-fluorouracil, epirubicin and cyclophosphamide) neoadjuvant chemotherapy. We compared the ABC transporter expression profile between two classes of pretreatment tumor samples divided by the patients’ pathological response to neoadjuvant chemotherapy (residual disease [RD] versus pathologic complete response [pCR]) ABCB3, ABCC7 and ABCF2 showed significantly high expression in the pCR. Several ABC transporters including ABCC5, ABCA12, ABCA1 ABCC13, ABCB6 and ABCC11 showed significantly increased expression in the RD (p<0.05). We evaluated the feasibility of developing a multigene predictor model of pathologic response to neoadjuvant chemotherapy using gene expression profiles of ABC transporters. The prediction error was evaluated by leave-one-out cross-validation (LOOCV). A multigene predictor model with the ABC transporters differentially expressed between the two classes (p≤0.003) showed an average 92.8% of predictive accuracy (95% CI, 88.0–97.4%) with a 93.2% (95% CI, 85.2–100%) positive predictive value for pCR, a 93.6% (95% CI, 87.8–99.4%) negative predictive value, a sensitivity of 88.1%(95% CI, 76.8–99.4%), and a specificity of 95.9% (91.1% CI, 87.8–100%). Our results suggest that several ABC transporters in human breast cancer cells may affect the clinical response to neoadjuvant chemotherapy, and transcriptional profiling of these genes may be useful to predict the pathologic response to sequential weekly paclitaxel/FEC in breast cancer patients.

Keywords

ATP-binding-cassette (ABC) transporters breast cancer class prediction neoadjuvant chemotherapy oligonucleotide microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by funds for the Third Term Comprehensive 10-Year Strategy for Cancer Control and a Grant-in-Aid for Scientific Research and for Health and Labor Science Research Grants, Research on Advanced Medical Technology, H14-Toxico-007. We are grateful to Tokuzo Arao, Tsutomu Ohta, and Takayuki Kinoshita, for their contribution to the article and assistance in collection of clinical data. Analyses were carried out using BRB ArrayTools developed by Dr. Richard Simon and Amy Peng Lam.

References

  1. 1.
    Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM: Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplificationScience232: 643–645, 1986PubMedCrossRefGoogle Scholar
  2. 2.
    Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I: Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cellsProc Natl Acad Sci USA83: 4538–4542, 1986 PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenberg MF, Mao Q, Holzenburg A, Ford RC, Deeley RG, Cole SP: The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysisJ Biol Chem276: 16,076–16,082, 2001Google Scholar
  4. 4.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD: A multidrug resistance transporter from human MCF-7 breast cancer cellsProc Natl Acad Sci USA95: 15,665–15,670, 1998CrossRefGoogle Scholar
  5. 5.
    Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP: Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicinClin Cancer Res4: 389–398, 1998PubMedGoogle Scholar
  6. 6.
    Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F, Orsetti B, Scheffer GL, Ychou M, Khan QA, Pommier Y, Pau B, Martineau P, Del Rio M: ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastasesInt J Cancer109: 848–854, 2004 PubMedCrossRefGoogle Scholar
  7. 7.
    Salmon SE, Grogan TM, Miller T, Scheper R, Dalton WS: Prediction of doxorubicin resistance in vitro in myeloma, lymphoma, and breast cancer by P-glycoprotein stainingJ Natl Cancer Inst81: 696–701, 1989 PubMedCrossRefGoogle Scholar
  8. 8.
    Nakamura Y, Oka M, Soda H, Shiozawa K, Yoshikawa M, Itoh A, Ikegami Y, Tsurutani J, Nakatomi K, Kitazaki T, Doi S, Yoshida H, Kohno S: Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistanceCancer Res65: 1541–1546, 2005PubMedCrossRefGoogle Scholar
  9. 9.
    Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J: Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genesCancer Res64: 8987–8993, 2004 PubMedCrossRefGoogle Scholar
  10. 10.
    Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, Reinhold W, Guo Y, Kruh GD, Reimers M, Weinstein JN, Gottesman MM: Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cellsCancer Cell6: 129–137, 2004PubMedCrossRefGoogle Scholar
  11. 11.
    Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B: Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18J Natl Cancer InstMonogr: 96–102, 2001 Google Scholar
  12. 12.
    Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extractionAnal Biochem162: 156–159, 1987PubMedCrossRefGoogle Scholar
  13. 13.
    Radmacher MD, McShane LM, Simon R: A paradigm for class prediction using gene expression profilesJ Comput Biol9: 505–511, 2002PubMedCrossRefGoogle Scholar
  14. 14.
    Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR: Multiclass cancer diagnosis using tumor gene expression signaturesProc Natl Acad Sci USA98: 15,149–15,154, 2001CrossRefGoogle Scholar
  15. 15.
    Simon R, Radmacher MD, Dobbin K, McShane LM: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classificationJ Natl Cancer Inst95: 14–18, 2003PubMedCrossRefGoogle Scholar
  16. 16.
    Ambroise C, McLachlan GJ: Selection bias in gene extraction on the basis of microarray gene-expression dataProc Natl Acad Sci USA99: 6562–6566, 2002PubMedCrossRefGoogle Scholar
  17. 17.
    Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W, III, Dantzig AH: The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolitesMol Cancer Ther4: 855–863, 2005 PubMedCrossRefGoogle Scholar
  18. 18.
    Momburg F, Hammerling GJ: Generation and TAP-mediated transport of peptides for major histocompatibility complex class I moleculesAdv Immunol68: 191–256, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Singal DP, Ye M, Ni J, Snider DP: Markedly decreased expression of TAP1 and LMP2 genes in HLA class I-deficient human tumor cell linesImmunol Lett50: 149–154, 1996PubMedCrossRefGoogle Scholar
  20. 20.
    Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B: Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcomeClin Cancer Res11: 2552–2560, 2005PubMedCrossRefGoogle Scholar
  21. 21.
    Cresswell AC, Sisley K, Laws D, Parsons MA, Rennie IG, Murray AK: Reduced expression of TAP-1 and TAP-2 in posterior uveal melanoma is associated with progression to metastatic diseaseMelanoma Res11: 275–281, 2001PubMedCrossRefGoogle Scholar
  22. 22.
    Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F, Storkel S, Seliger B: MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinomaInt J Cancer109: 265–273, 2004PubMedCrossRefGoogle Scholar
  23. 23.
    Allikmets R, Gerrard B, Hutchinson A, Dean M: Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags databaseHum Mol Genet5: 1649–1655, 1996 PubMedCrossRefGoogle Scholar
  24. 24.
    Wielinga P, Hooijberg JH, Gunnarsdottir S, Kathmann I, Reid G, Zelcer N, van der Born K, de Haas M, van der Heijden I, Kaspers G, Wijnholds J, Jansen G, Peters G, Borst P: The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolatesCancer Res65: 4425–4430, 2005 PubMedCrossRefGoogle Scholar
  25. 25.
    Hu XF, Slater A, Rischin D, Kantharidis P, Parkin JD, Zalcberg J: Induction of MDR1 gene expression by anthracycline analogues in a human drug resistant leukaemia cellline Br J Cancer79: 831–837, 1999PubMedCrossRefGoogle Scholar
  26. 26.
    Mealey KL, Barhoumi R, Burghardt RC, Safe S, Kochevar DT: Doxycycline induces expression of P glycoprotein in MCF-7 breast carcinoma cellsAntimicrob Agents Chemother46: 755–761, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Filipits M, Pohl G, Rudas M, Dietze O, Lax S, Grill R, Pirker R, Zielinski CC, Hausmaninger H, Kubista E, Samonigg H, Jakesz R: Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: the Austrian Breast and Colorectal Cancer Study GroupJ Clin Oncol23: 1161–1168, 2005 PubMedCrossRefGoogle Scholar
  28. 28.
    Schmitz G, Langmann T: Structure, function and regulation of the ABC1 gene productCurr Opin Lipidol12: 129–140, 2001PubMedCrossRefGoogle Scholar
  29. 29.
    Schmitz G, Kaminski WE, Porsch-Ozcurumez M, Klucken J, Orso E, Bodzioch M, Buchler C, Drobnik W: ATP-binding cassette transporter A1 (ABCA1) in macrophages: a dual function in inflammation and lipid metabolism?Pathobiology67: 236–240, 1999 PubMedCrossRefGoogle Scholar
  30. 30.
    Yabuuchi H, Takayanagi S, Yoshinaga K, Taniguchi N, Aburatani H, Ishikawa T: ABCC13, an unusual truncated ABC transporter, is highly expressed in fetal human liverBiochem Biophys Res Commun299: 410–417, 2002PubMedCrossRefGoogle Scholar
  31. 31.
    Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD: MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenineJ Biol Chem278: 29,509–29,514, 2003 Google Scholar
  32. 32.
    Mitsuhashi N, Miki T, Senbongi H, Yokoi N, Yano H, Miyazaki M, Nakajima N, Iwanaga T, Yokoyama Y, Shibata T, Seino S: MTABC3, a novel mitochondrial ATP-binding cassette protein involved in iron homeostasisJ Biol Chem275: 17,536–17,540, 2000 Google Scholar
  33. 33.
    Yasui K, Mihara S, Zhao C, Okamoto H, Saito-Ohara F, Tomida A, Funato T, Yokomizo A, Naito S, Imoto I, Tsuruo T, Inazawa J: Alteration in copy numbers of genes as a mechanism for acquired drug resistanceCancer Res64: 1403–1410, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sarah Park
    • 1
    • 4
  • Chikako Shimizu
    • 2
  • Tatsu Shimoyama
    • 1
  • Masayuki Takeda
    • 1
  • Masashi Ando
    • 2
  • Tsutomu Kohno
    • 2
  • Noriyuki Katsumata
    • 2
  • Yoon-Koo Kang
    • 3
  • Kazuto Nishio
    • 1
    • 5
    • 3
    • 6
  • Yasuhiro  Fujiwara
    • 2
  1. 1.Shien LabNational Cancer Center HospitalTokyoJapan
  2. 2.Breast and Medical Oncology National Cancer Center HospitalTokyoJapan
  3. 3.Pharmacology DivisionNational Cancer Center Research InstituteTokyoJapan
  4. 4.Center for Medical GenomicsNational Cancer Center Research InstituteTokyoJapan
  5. 5.Division of Hematology–Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  6. 6.Shien LabNational Cancer Center HospitalTokyoJapan

Personalised recommendations