Advertisement

Breast Cancer Research and Treatment

, Volume 96, Issue 1, pp 83–90 | Cite as

Serum biomarkers for detection of breast cancers: a prospective study

  • Carole Mathelin
  • Anne Cromer
  • Corinne Wendling
  • Catherine Tomasetto
  • Marie- Christine  Rio
Clinical trial

Abstract

Using surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF), Li et al. [Clin Chem 48(8): 1296–1304, 2002] identified 3 serum biomarkers, BC1 (4.3 kDa), BC2 (8.1 kDa) and BC3 (8.9 kDa), whose combination significantly detects breast cancer patients from non-cancer controls. This work aimed to validate these biomarkers in an independent prospective study. We screened 89 serum samples including 49 breast cancers at pT1-4N0M0 (n = 23), pT1-4N1-3M0 (n = 17) or pT1-4N0-3M1 (n = 9) stages, 13 benign breast diseases and 27 healthy women. The BC2 biomarker significance was not recovered. However, we found 2 peaks that we named BC1a (4286 Da) and BC1b (4302 Da), that could correspond to Li’s BC1 since they significantly decrease in breast cancers (p < 0.00007 and p < 0.0002, respectively). Similarly, BC3a (8919 Da) and BC3b (8961 Da) are significantly increased in breast cancers (< 0.02 and < 0.0002, respectively) and could correspond to the Li’s BC3. For each biomarker we defined stringent (no errors) and flexible (less than 10% errors) cut-off values and tested the power of the combined BC1a/BC1b/BC3a/BC3b stringent and flexible profiles to discriminate breast cancers. They identified 33% and 45% cancers, respectively. Applied to the same series, Ca 15.3 test identified 22% patients. Interestingly, in association with the BC1a/BC1b/BC3a/BC3b profiles, Ca 15.3 improved the number of detected cancers indicating that it is an independent parameter. Collectively, our data partially validate those of Li’s study and confirm that the BC1 and BC3 biomarkers are helpful for breast cancer diagnosis.

Keywords

breast cancer prospective study proteomics SELDI-TOF serum biomarkers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Kadour Annane, Sophie Bayer, Jean-Pierre Bellocq, Jean-Pierre Bergerat, Jean-Philippe Brettes, Marie-Pierre Chenard, Patrick Dufour, Françoise Eichler, Michèle Grima, Sandrine Kandel, Emmanuel Kurtz, Jean-Louis Mehl and Gabrielle Tagland for their collaboration, and Susan Chan for her helpful discussion. This work was supported by funds from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg, the Association pour la Recherche sur le Cancer, and the European Commission (FP5 QLK3-CT-2002-02136, FP6 LSHC-CT-2003-503297), and Novartis. We are indebted to the Ligue Nationale Française contre le Cancer and the Comités du Haut-Rhin et du Bas-Rhin for their constant and considerable financial support. A.C. was a recipient of a Centre Anti-Cancéreux Paul Strauss fellowship.

References

  1. 1.
    Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW, 2002 Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer Clin Chem 48(8):1296–1304PubMedGoogle Scholar
  2. 2.
    Chung M, Chang HR, Bland KI, Wanebo HJ, 1996 Younger women with breast carcinoma have a poorer prognosis than older women Cancer 77(1):97–103CrossRefPubMedGoogle Scholar
  3. 3.
    Jmor S, Al-Sayer H, Heys SD, Payne S, Miller I, Ah-See A, et al.: 2002 Breast cancer in women aged 35 and under: prognosis and survival J R Coll Surg Edinb 47(5):693–699PubMedGoogle Scholar
  4. 4.
    Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005365(9472): 1687–1717Google Scholar
  5. 5.
    Ermilova VD, 1980 [International histological classification of breast cancer by the WHO (1968) and its prognostic value] Arkh Patol 42(4):13–19PubMedGoogle Scholar
  6. 6.
    Singletary SE, Greene FL, 2003 Revision of breast cancer staging: the 6th edition of the TNM Classification Semin Surg Oncol 21(1):53–59CrossRefPubMedGoogle Scholar
  7. 7.
    Rosenberg RD, Hunt WC, Williamson MR, Gilliland FD, Wiest PW, Kelsey CA, et al. 1998 Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico Radiology 209(2):511–518PubMedGoogle Scholar
  8. 8.
    Ugnat AM, Xie L, Morriss J, Semenciw R, Mao Y, 2004 Survival of women with breast cancer in Ottawa, Canada: variation with age, stage, histology, grade and treatment Br J Cancer 90(6):1138–43CrossRefPubMedGoogle Scholar
  9. 9.
    Sant M, Allemani C, Capocaccia R, Hakulinen T, Aareleid T, Coebergh JW, et al. 2003 Stage at diagnosis is a key explanation of differences in breast cancer survival across Europe Int J Cancer 106(3):416–422CrossRefPubMedGoogle Scholar
  10. 10.
    Lumachi F, Basso SM, Brandes AA, Pagano D, Ermani M, 2004 Relationship between tumor markers CEA and CA 15-3, TNM staging, estrogen receptor rate and MIB-1 index in patients with pT1-2 breast cancer Anticancer Res 24(5B):3221–3224PubMedGoogle Scholar
  11. 11.
    Stein RC, Zvelebil MJ, 2002 The application of 2D gel-based proteomics methods to the study of breast cancer J Mammary Gland Biol Neoplasia 7(4):385–393CrossRefPubMedGoogle Scholar
  12. 12.
    Hondermarck H, 2003 Breast cancer: when proteomics challenges biological complexity Mol Cell Proteomics 2(5):281–291PubMedGoogle Scholar
  13. 13.
    Issaq HJ, Veenstra TD, Conrads TP, Felschow D, 2002 The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification Biochem Biophys Res Commun 292(3):587–592CrossRefPubMedGoogle Scholar
  14. 14.
    Sauter ER, Shan S, Hewett JE, Speckman P, Du Bois GC, 2005 Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS Int J Cancer 114(5):791–796CrossRefPubMedGoogle Scholar
  15. 15.
    Liu W, Guan M, Wu D, Zhang Y, Wu Z, Xu M, et al. 2005 Using Tree Analysis Pattern and SELDI-TOF-MS to Discriminate Transitional Cell Carcinoma of the Bladder Cancer from Noncancer Patients Eur Urol 47(4):456–462CrossRefPubMedGoogle Scholar
  16. 16.
    Wilson LL, Tran L, Morton DL, Hoon DS, 2004 Detection of differentially expressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry Ann N Y Acad Sci 1022:317–322CrossRefPubMedGoogle Scholar
  17. 17.
    Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R, et al., 2004 Using decision forest to classify prostate cancer samples on the basis of SELDI-TOF MS data: assessing chance correlation and prediction confidence Environ Health Perspect 112(16):1622–1627PubMedGoogle Scholar
  18. 18.
    Meric-Bernstam F, 2004 Serum proteomics for BRCA1-associated breast cancer Ann Surg Oncol 11(10):883–884CrossRefPubMedGoogle Scholar
  19. 19.
    Gretzer MB, Chan DW, van Rootselaar CL, Rosenzweig JM, Dalrymple S, Mangold LA, et al., 2004 Proteomic analysis of dunning prostate cancer cell lines with variable metastatic potential using SELDI-TOF Prostate 60(4):325–331CrossRefPubMedGoogle Scholar
  20. 20.
    Laronga C, Becker S, Watson P, Gregory B, Cazares L, Lynch H, et al., 2003 SELDI-TOF serum profiling for prognostic and diagnostic classification of breast cancers Dis Markers 19(4–5):229–238PubMedGoogle Scholar
  21. 21.
    Glinsky GV, Higashiyama T, Glinskii AB, 2004 Classification of human breast cancer using gene expression profiling as a component of the survival predictor algorithm Clin Cancer Res 10(7):2272–2283CrossRefPubMedGoogle Scholar
  22. 22.
    Bloom HJ, Richardson WW, Harries EJ, 1962 Natural history of untreated breast cancer (1805–1933). Comparison of untreated and treated cases according to histological grade of malignancy Br Med J 5299:213–221PubMedCrossRefGoogle Scholar
  23. 23.
    Thike AA, Chng MJ, Fook-Chong S, Tan PH, 2001 Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters Pathology 33(1):21–25CrossRefPubMedGoogle Scholar
  24. 24.
    Pinder SE, Ellis IO, Galea M, O’Rouke S, Blamey RW, Elston CW, 1994 Pathological prognostic factors in breast cancer. III. Vascular invasion: relationship with recurrence and survival in a large study with long-term follow-up Histopathology 24(1):41–47PubMedCrossRefGoogle Scholar
  25. 25.
    Westenend PJ, Meurs CJ, Damhuis RA, 2005 Tumour size and vascular invasion predict distant metastasis in stage I breast cancer. Grade distinguishes early and late metastasis J Clin Pathol 58(2):196–201CrossRefPubMedGoogle Scholar
  26. 26.
    Ransohoff DF, 2005 Lessons from controversy: ovarian cancer screening and serum proteomics J Natl Cancer Inst 97(4):315–319PubMedCrossRefGoogle Scholar
  27. 27.
    Check E, 2004 Proteomics and cancer: running before we can walk? Nature 429(6991):496–497CrossRefPubMedGoogle Scholar
  28. 28.
    Simpson RJ, Dorow DS, 2001 Cancer proteomics: from signaling networks to tumor markers Trends Biotechnol 19(10 Suppl):S40–S48CrossRefPubMedGoogle Scholar
  29. 29.
    Romain S, Laine Bidron C, Martin PM, Magdelenat H, 1995 Steroid receptor distribution in 47,892 breast cancers. A collaborative study of 7 European laboratories. The EORTC Receptor Study Group Eur J Cancer 31A(3):411–417CrossRefPubMedGoogle Scholar
  30. 30.
    Srinivas PR, Verma M, Zhao Y, Srivastava S, 2002 Proteomics for cancer biomarker discovery Clin Chem 48(8):1160–1169PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carole Mathelin
    • 1
    • 2
    • 3
  • Anne Cromer
    • 3
  • Corinne Wendling
    • 3
  • Catherine Tomasetto
    • 3
  • Marie- Christine  Rio
    • 3
  1. 1.Hôpitaux Universitaires de Strasbourg, 1, place de l’hôpitalStrasbourg CedexFrance
  2. 2.Centre de lutte contre le cancer Paul Strauss, 3, rue de la Porte-de-l’hôpitalStrasbourg CedexFrance
  3. 3.UMR 7104, U596 INSERM Illkirch CedexFrance

Personalised recommendations