Breast Cancer Research and Treatment

, Volume 93, Issue 2, pp 125–134 | Cite as

A Multicenter Randomized Clinical Trial Evaluating Interleukin-2 Activated Hematopoietic Stem Cell Transplantation and Post-transplant IL-2 for High Risk Breast Cancer Patients

  • Claudine Isaacs
  • Rebecca Slack
  • Edmund Gehan
  • Karen Ballen
  • Ralph Boccia
  • Ellen Areman
  • Ruthie Kramer
  • Daniel F. Hayes
  • Herbert Herscowitz
  • Marc Lippman
Clinical Trial



This Phase III randomized multicenter trial compared progression-free (PFS) and overall survival (OS) for autologous peripheral blood stem cell (aPBSC) transplantation with or without immunotherapy in high-risk breast cancer patients.


Eligible patients had American Joint Committee on Cancer (AJCC) 5th Edition Stage II/IIIA with ≥ 4 axillary nodes, Stage IIIB, or chemotherapy-sensitive or stable Stage IV disease. Following treatment with cyclophosphamide, thiotepa and carboplatin (STAMP V), patients were randomized to aPBSC transplant with or without immunotherapy. Patients on immunotherapy received cells that were incubated in interleukin-2 (IL-2) for 24 h followed by parenteral IL-2 for 5 days then 2 days of rest for 4 weeks.


Fifty-nine patients were treated (35 Stage II/IIIA; 13 Stage IIIB; 11 Stage IV), 30 patients were randomized to immunotherapy and 29 patients to no immunotherapy. Neutrophils engrafted a median of 10 days post-transplant in both groups. The median times to platelet engraftment were 9 and 10 days after transplant in the no-immunotherapy and immunotherapy groups, respectively (= 0.03). There was no statistical evidence (= 0.61) of a difference in progression-free and surviving (PFS) at 3 years for patients receiving immunotherapy (53%) compared with no immunotherapy (48%). There was some evidence of superiority in overall survival (OS) at 3 years for patients receiving immunotherapy (83%) compared with no immunotherapy (69%), but the difference between survival curves was not statistically significant (= 0.08). Also, there was some evidence that patients developing acute graft versus host disease (aGVHD) had superior PFS (= 0.02) but not OS (= 0.19) than patients not developing aGVHD. Toxicities were transient and similar between groups, with no treatment-related deaths.


This phase III study of high-risk breast cancer patients randomized to immunotherapy or no immunotherapy demonstrated that a well-tolerated immunotherapy regimen added to aPBSC transplant did not improve PFS, but there was some improvement in OS, but not by an amount that was statistically significant (= 0.08).


breast cancer immunotherapy interleukin-2 stem cell transplantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stadtmauer, EA, O’Neill, A, Goldstein, LJ, Crilley, PA, Mangan, KF, Ingle, JN, Brodsky, I, Martino, S, Lazarus, HM, Erban, JK, Sickles, C, Glick, JH 2000Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia bone marrow transplant groupN Engl J Med34210691076CrossRefPubMedGoogle Scholar
  2. 2.
    Rodenhuis, S, Bontenbal, M, Beex, LVAM, Wagstaff, J, Richel, DJ, Nooij, MA, Voest, EE, Hupperets, P, Tinteren, H, Peterse, HL, TenVergert, EM, Vries, EGE 2003The Netherlands working party on Autologous Transplantation in Solid Tumors: High-dose chemotherapy with hematopoietic stem-cell rescue for high risk breast cancerEngl J Med349716CrossRefGoogle Scholar
  3. 3.
    Roche, H, Viens, P, Biron, P, Lotz, JP, Asselain, B 2003High-dose chemotherapy for breast cancer: the French PEGASE experienceCancer Control104247PubMedGoogle Scholar
  4. 4.
    Tallman, MS, Gray, R, Robert, NJ, LeMaistre, CF, Osborne, CK, Vaughan, WP, Gradishar, WJ, Pisansky, TM, Fetting, J, Paietta, E, Lazarus, HM 2003Conventional adjuvant chemotherapy with or without high-dose chemotherapy and autologous stem-cell transplantation in high-risk breast cancerN Engl J Med3491726CrossRefPubMedGoogle Scholar
  5. 5.
    Zander, AR, Kroger, N, Schmoor, C, Kruger, W, Mobus, V, Frickhofen, N, Metzner, B, Schultze, W, Berdel, WE, Koenigsmann, M, Thiel, E, Wandt, H, Possinger, K, Trumper, L, Kreienberg, R, Carstensen, M, Schmidt, EH, Janicke, F, Schumacher, M, Jonat, W 2004High-dose chemotherapy with autologous hematopoietic stem-cell support compared with standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: first results of a randomized trialJ Clin Oncol2222732283CrossRefPubMedGoogle Scholar
  6. 6.
    Antman KH: Overview of the six available randomized trials of high-dose chemotherapy with blood or marrow transplant in breast cancer. J Natl Cancer Inst Monogr : 114–116, 2001Google Scholar
  7. 7.
    The Scandinavian Breast Cancer Study Group: Results from a randomized adjuvant breast cancer study with high dose chemotherapy with CTCb supported by autologous bone marrow stem cells versus dose escalated and tailored FEC therapy. Proc Am Assoc Clin Oncol 18: 2a, 1999Google Scholar
  8. 8.
    Peters WP, Rosner G, Vredenburgh J, Shpall E, Crump M, Marks L, Cirrincione C, Hurd D, Norton L: Updated results of a prospective randomized comparison of two doses of combination alkylating agents as consolidation after CAF in high risk primary breast cancer involving ten or more axillary lymph nodes: CALGB 9082/SWOG 9114/NCIC MA-13. Proc Am Assoc Clin Oncol. 20: 21a, 2001Google Scholar
  9. 9.
    Peters, WP, Ross, M, Vredenburgh, JJ, Meisenberg, B, Marks, B, Marks, LB, Winder, E, Kurtzberg, J, Bast, RC,Jr, Jones, R, Shpall, E, Wu, K, Rosner, G, Gilbert, C, Mathias, B, Coniglio, D, Petros, W, Henderson, IC, Norton, L, Weiss, RB, Budman, D, Hurd, D 1993High-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancerJ Clin Oncol1111321143PubMedGoogle Scholar
  10. 10.
    Rahman, Z, Frye, D, Buzdar, A, Smith, T, Asmar, L, Champlin, R, Hortobagyi, G 1997Impact of selection process on response rate and long-term survival of potential high-dose chemotherapy candidates treated with standard-dose doxorubicin-containing chemotherapy in patients with metastatic breast cancerJ Clin Oncol1531713177PubMedGoogle Scholar
  11. 11.
    Meehan, KR, Verma, UN, Cahill, R, Frankel, S, Areman, EM, Sacher, RA, Foelber, R, Rajagopal, C, Gehan, EA, Lippman, ME, Mazumder, A 1997Interleukin-2-activated hematopoietic stem cell transplantation for breast cancer: investigation of dose level with clinical correlatesBone Marrow Transplant20643651CrossRefPubMedGoogle Scholar
  12. 12.
    Meehan, KR, Verma, UN, Rajogopal, C, Cahill, R, Frankel, S, Mazumder, A 1996Stem cell transplantation with chemoradiotherapy myeloablation and interleukin-2J Infus Chemother62832PubMedGoogle Scholar
  13. 13.
    Meehan, KR, Arun, B, Gehan, EA, Berberian, B, Sulica, V, Areman, EM, Mazumder, A, Lippman, ME 1999Immunotherapy with interleukin-2 and alpha-interferon after IL-2-activated hematopoietic stem cell transplantation for breast cancerBone Marrow Transplant23667673CrossRefPubMedGoogle Scholar
  14. 14.
    Antman, KH, Rowlings, PA, Vaughan, WP, Pelz, CJ, Fay, JW, Fields, KK, Freytes, CO, Gale, RP, Hillner, BE, Holland, HK, Kennedy, MJ, Klein, JP, Lazarus, HM, McCarthy, PL,Jr., Saez, R, Spitzer, G, Stadtmauer, EA, Williams, SF, Wolff, S, Sobocinski, KA, Armitage, JO, Horowitz, MM 1997High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America [see comments]J Clin Oncol1518701879PubMedGoogle Scholar
  15. 15.
    Verma, UN, Areman, E, Dickerson, SA, Kotula, PL, Sacher, R, Mazumder, A 1995Interleukin-2 activation of chemotherapy and growth factor-mobilized peripheral blood stem cells for generation of cytotoxic effectorsBone Marrow Transplant15199206PubMedGoogle Scholar
  16. 16.
    Horn, TD 1994Acute cutaneous eruptions after marrow ablation: roses by other names?J Cutan Pathol21385392PubMedGoogle Scholar
  17. 17.
    Rodenhuis, S, Richel d Wall, E, Schornagel, J, Baars, J, Koning, C, Peterse, J, Borger, J, Nooijen, W, Bakx, R, Dalesio, O, Rutgers, E 1998Randomised trial of high-dose chemotherapy and haemopoietic progenitor-cell support in operable breast cancer with extensive axillary lymph-node involvementLancet352515521CrossRefPubMedGoogle Scholar
  18. 18.
    Kaplan, E, Meier, P 1958Nonparametric estimation from incomplete observationsJ Am Stat Assoc53457481Google Scholar
  19. 19.
    Gehan, E 1965A generalized Wilcoxon test for comparing arbitrarily singly-censored samplesBiometrika52203223PubMedGoogle Scholar
  20. 20.
    Cox, DR 1972Regression models and life tablesJ Roy Stat Soc B34187202Google Scholar
  21. 21.
    Charak, BS, Malloy, B, Agah, R, Mazumder, A 1990A novel approach to purging of leukemia by activation of bone marrow with interleukin 2Bone Marrow Transplant6193198PubMedGoogle Scholar
  22. 22.
    Kennedy, MJ 1994Induced autologous graft-versus-host disease for the treatment of cancerCancer Treat Rev2097103CrossRefPubMedGoogle Scholar
  23. 23.
    Yeager, AM, Vogelsang, GB, Jones, RJ, Farmer, ER, Altomonte, V, Hess, AD, Santos, GW 1992Induction of cutaneous graft-versus-host disease by administration of cyclosporine to patients undergoing autologous bone marrow transplantation for acute myeloid leukemiaBlood7930313035PubMedGoogle Scholar
  24. 24.
    Jones, RJ, Vogelsang, GB, Hess, AD, Farmer, ER, Mann, RB, Geller, RB, Piantadosi, S, Santos, GW 1989Induction of graft-versus-host disease after autologous bone marrow transplantationLancet1754757CrossRefPubMedGoogle Scholar
  25. 25.
    Kennedy, MJ, Vogelsang, GB, Beveridge, RA, Farmer, ER, Altomonte, V, Huelskamp, AM, Davidson, NE 1993Phase I trial of intravenous cyclosporine to induce graft-versus-host disease in women undergoing autologous bone marrow transplantation for breast cancerJ Clin Oncol11478484PubMedGoogle Scholar
  26. 26.
    Agah, R, Malloy, B, Kerner, M, Girgis, E, Bean, P, Twomey, P, Mazumder, A 1989Potent graft antitumor effect in natural killer-resistant disseminated tumors by transplantation of interleukin 2-activated syngeneic bone marrow in miceCancer Res4959595963PubMedGoogle Scholar
  27. 27.
    Giralt, S, Weber, D, Colome, M, Dimopoulos, M, Mehra, R, Besien, K, Gajewski, J, Andersson, B, Khouri, I, Przepiorka, D, Wolff, B, Delasalle, K, Korbling, M, Seong, D, Alexanian, R, Champlin, R 1997Phase I trial of cyclosporine-induced autologous graft-versus-host disease in patients with multiple myeloma undergoing high-dose chemotherapy with autologous stem-cell rescueJ Clin Oncol15667673PubMedGoogle Scholar
  28. 28.
    Massumoto, C, Benyunes, MC, Sale, G, Beauchamp, M, York, A, Thompson, JA, Buckner, CD, Fefer, A 1996Close simulation of acute graft-versus-host disease by interleukin-2 administered after autologous bone marrow transplantation for hematologic malignancyBone Marrow Transplant17351356PubMedGoogle Scholar
  29. 29.
    Weiden, PL, Sullivan, KM, Flournoy, N, Storb, R, Thomas, ED 1981Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantationN Engl J Med30415291533PubMedGoogle Scholar
  30. 30.
    Jones, RJ, Ambinder, RF, Piantadosi, S, Santos, GW 1991Evidence of a graft-versus-lymphoma effect associated with allogeneic bone marrow transplantationBlood77649653PubMedGoogle Scholar
  31. 31.
    Keever, CA, Pekle, K, Gazzola, MV, Collins, NH, Gillio, A 1990NK and LAK activities from human marrow progenitors. I The effects of interleukin-1 and interleukin-2Cell Immunol126211226CrossRefPubMedGoogle Scholar
  32. 32.
    Charak, BS, Agah, R, Gray, D, Mazumder, A 1991Interaction of various cytokines with interleukin 2 in the generation of killer cells from human bone marrow: application in purging of leukemiaLeuk Res15801810CrossRefPubMedGoogle Scholar
  33. 33.
    Charak, BS, Choudhary, GD, Tefft, M, Mazumder, A 1992Interleukin-2 in bone marrow transplantation: preclinical studiesBone Marrow Transplant10103111PubMedGoogle Scholar
  34. 34.
    Charak, BS, Agah, R, Brynes, RK, Chogyoji, M, Groshen, S, Chen, SC, Mazumder, A 1992Interleukin-2 (IL-2) and IL-2-activated bone marrow in transplantation: evaluation from a clinical perspectiveBone Marrow Transplant9479486PubMedGoogle Scholar
  35. 35.
    Charak, BS, Brynes, RK, Groshen, S, Chen, SC, Mazumder, A 1990Bone marrow transplantation with interleukin-2-activated bone marrow followed by interleukin-2 therapy for acute myeloid leukemia in miceBlood7621872190PubMedGoogle Scholar
  36. 36.
    Verma, UN, Bagg, A, Brown, E, Mazumder, A 1994Interleukin-2 activation of human bone marrow in long-term cultures: an effective strategy for purging and generation of anti-tumor cytotoxic effectorsBone Marrow Transplant13115123PubMedGoogle Scholar
  37. 37.
    Meehan, KR, Ballen, K, Boccia, R 1994A multicenter phase I trial using STAMP V (CTCb) with IL-2 activated PBSC and IL-2 post transplantation for women with high-risk breast cancerBlood92absGoogle Scholar
  38. 38.
    Herrera, C, Garcia-Perez, MJ, Ramirez, R, Martin, C, Alvarez, MA, Martinez, F, Gomez, P, Garcia-Castellano, JM, Torres, A 1997Lymphokine-activated killer (LAK) cell generation from peripheral blood stem cells by in vitro incubation with low-dose interleukin-2 plus granulocyte-macrophage colony-stimulating factorBone Marrow Transplant19545551CrossRefPubMedGoogle Scholar
  39. 39.
    Meehan, KR, Slack, R, Gehan, E, Herscowitz, HB, Areman, EM, Ebadi, M, Cairo, MS, Lippman, ME 2002Mobilization of peripheral blood stem cells with paclitaxel and rhG-CSF in high-risk breast cancer patientsJ Hematother Stem Cell Res11415421CrossRefPubMedGoogle Scholar
  40. 40.
    Pittet, MJ, Speiser, DE, Valmori, D, Cerottini, JC, Romero, P 2000Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expressionJ Immunol164114852PubMedGoogle Scholar
  41. 41.
    Zoll, B, Lefterova, P, Csipai, M, Finke, S, Trojaneck, B, Ebert, O, Micka, B, Roigk, K, Fehlinger, M, Schmidt-Wolf, GD, Huhn, D, Schmidt-Wolf, IG 1998Generation of cytokine-induced killer cells using exogenous interleukin-2, -7 or -12Cancer Immunol Immunother47221226CrossRefPubMedGoogle Scholar
  42. 42.
    Schmidt-Wolf, GD, Negrin, RS, Schmidt-Wolf, IG 1997Activated T cells and cytokine-induced CD3+CD56+ killer cellsAnn Hematol745156CrossRefPubMedGoogle Scholar
  43. 43.
    Crown, J 2004Smart bombs versus blunderbusses: high-dose chemotherapy for breast cancerLancet36412991300CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Claudine Isaacs
    • 1
  • Rebecca Slack
    • 2
  • Edmund Gehan
    • 2
  • Karen Ballen
    • 3
  • Ralph Boccia
    • 4
  • Ellen Areman
    • 1
  • Ruthie Kramer
    • 5
  • Daniel F. Hayes
    • 1
    • 6
  • Herbert Herscowitz
    • 7
  • Marc Lippman
    • 1
    • 6
  1. 1.Division of Hematology and OncologyLombardi Comprehensive Cancer CenterWashingtonUSA
  2. 2.Division of Biostatistics and Bioinformatics, Department of OncologyLombardi Comprehensive Cancer CenterWashingtonUSA
  3. 3.Bone Marrow Transplant ProgramUniversity of Massachusetts Memorial Medical CenterWorcesterUSA
  4. 4.Stem Cell Transplant ProgramHoly Cross HospitalSilver SpringUSA
  5. 5.Clinical Research Management OfficeLombardi Comprehensive Cancer CenterWashingtonUSA
  6. 6.Department of Internal MedicineUniversity of Michigan Health and Hospital SystemAnn ArborUSA
  7. 7.Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonUSA

Personalised recommendations