Breast Cancer Research and Treatment

, Volume 91, Issue 3, pp 271–278 | Cite as

Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells

  • Carsten T. Viehl
  • Yoshiyuki Tanaka
  • Tingting Chen
  • Daniel M. Frey
  • Andrew Tran
  • Timothy P. Fleming
  • Timothy J. Eberlein
  • Peter S. Goedegebuure


Proteins can be efficiently introduced into cells when fused to a protein transduction domain, such as Tat from the human immunodeficiency virus. We recently reported that dendritic cells transduced with a Tat fusion protein containing the extracellular domain of Her2/neu (Tat-Her2/neu) induced CD8 cytotoxic T lymphocytes (CTL) that specifically lysed Her2/neu-expressing breast and ovarian cancer cells. In the current study we further investigated the mechanism of protein transduction, utilizing the breast cancer-associated protein, mammaglobin-A, which is expressed in about 80% of breast cancers. Using a Tat-mammaglobin fusion protein, we tested the ability of Tat-mammaglobin transduced dendritic cells to stimulate antigen-specific CD4 and CD8 T cells. Low levels of serum considerably improved protein transduction as determined by Western blot, and also improved presentation of antigenic peptide as evidenced by functional studies using antigen-specific T cells. Confocal microscope analyses of antigen-presenting cells (APC) incubated with Tat-mammaglobin showed localized distribution in addition to diffuse distribution in the cytosol. In contrast, mammaglobin lacking Tat showed only a localized distribution. Simultaneous incubation with both proteins resulted in overlapping localized distributions, suggesting Tat fusion proteins are processed through both the MHC class I and class II pathways. Indeed, stimulation of T cells with Tat-mammaglobin transduced dendritic cells led to an expansion of mammaglobin-specific CD4 T helper-1 lymphocytes along with CD8 CTL. We conclude that Tat-mammaglobin transduced dendritic cells can induce both CD4 and CD8 mammaglobin-specific T cells. These findings could be further exploited for the development of a mammaglobin-based vaccine for breast cancer.


antigen-presenting cell breast cancer vaccine mammaglobin protein transduction T cells Tat fusion protein 





antigen-presenting cells


human immunodeficiency virus


major histocompatibility complex




cytotoxic T lymphocyte




fluorescence isothiocyanate


peripheral blood mononuclear cells




interferon gamma


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paczesny, S, Ueno, H, Fay, J, Banchereau, J, Palucka, AK 2003Dendritic cells as vectors for immunotherapy of cancerSemin Cancer Biol13439447CrossRefPubMedGoogle Scholar
  2. 2.
    Ridgway, D 2003The first 1000 dendritic cell vaccineesCancer Invest21873886CrossRefPubMedGoogle Scholar
  3. 3.
    Tanaka, Y, Dowdy, SF, Linehan, DC, Eberlein, TJ, Goedegebuure, PS 2003Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cellsJ Immunol17012911298PubMedGoogle Scholar
  4. 4.
    Becker-Hapak, M, McAllister, SS, Dowdy, SF 2001TAT-mediated protein transduction into mammalian cellsMethods24247256PubMedGoogle Scholar
  5. 5.
    Schwarze, SR, Hruska, KA, Dowdy, SF 2000Protein transduction: unrestricted delivery into all cellsTrends Cell Biol10290295Google Scholar
  6. 6.
    Wadia, JS, Dowdy, SF 2002Protein transduction technologyCurr Opin Biotechnol135256PubMedGoogle Scholar
  7. 7.
    Nagahara, H, Vocero-Akbani, AM, Snyder, EL, Ho, A, Latham, DG, Lissy, NA, Becker-Hapak, M, Ezhevsky, SA, Dowdy, SF 1998Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migrationNat Med414491452CrossRefPubMedGoogle Scholar
  8. 8.
    Frankel, AD, Pabo, CO 1988Cellular uptake of the tat protein from human immunodeficiency virusCell5511891193CrossRefPubMedGoogle Scholar
  9. 9.
    Schwarze, SR, Ho, A, Vocero-Akbani, A, Dowdy, SF 1999In vivo protein transduction: delivery of a biologically active protein into the mouseScience28515691572PubMedGoogle Scholar
  10. 10.
    Kim, DT, Mitchell, DJ, Brockstedt, DG, Fong, L, Nolan, GP, Fathman, CG, Engleman, EG, Rothbard, JB 1997Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptideJ Immunol15916661668PubMedGoogle Scholar
  11. 11.
    Shibagaki, N, Udey, MC 2003Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanomaEur J Immunol33850860CrossRefPubMedGoogle Scholar
  12. 12.
    Lu, J, Higashimoto, Y, Appella, E, Celis, E 2004Multiepitope Trojan antigen peptide vaccines for the induction of antitumor CTL and Th immune responsesJ Immunol17245754582PubMedGoogle Scholar
  13. 13.
    Wang, HY, Fu, T, Wang, G, Zeng, G, Perry-Lalley, DM, Yang, JC, Restifo, NP, Hwu, P, Wang, RF 2002Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cellsJ Clin Invest10914631470CrossRefPubMedGoogle Scholar
  14. 14.
    Shibagaki, N, Udey, MC 2002Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunityJ Immunol16823932401PubMedGoogle Scholar
  15. 15.
    Goedegebuure, PS, Watson, MA, Viehl, CT, Fleming, TP 2004Mammaglobin-based strategies for treatment of breast cancerCurr Cancer Drug Targets4531542CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka, Y, Amos, KD, Fleming, TP, Eberlein, TJ, Goedegebuure, PS 2003Mammaglobin-A is a tumor-associated antigen in human breast carcinomaSurgery1337480CrossRefPubMedGoogle Scholar
  17. 17.
    Ribas, A, Butterfield, LH, Glaspy, JA, Economou, JS 2003Current developments in cancer vaccines and cellular immunotherapyJ Clin Oncol2124152432CrossRefPubMedGoogle Scholar
  18. 18.
    Pardoll, DM, Topalian, SL 1998The role of CD4+ T cell responses in antitumor immunityCurr Opin Immunol10588594CrossRefPubMedGoogle Scholar
  19. 19.
    Giuntoli, RL,2nd, Lu, J, Kobayashi, H, Kennedy, R, Celis, E 2002Direct costimulation of tumor-reactive CTL by helper T cells potentiate their proliferation, survival, and effector functionClin Cancer Res8922931PubMedGoogle Scholar
  20. 20.
    Wang, RF, Wang, HY 2002Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cellsNat Biotechnol20149154CrossRefPubMedGoogle Scholar
  21. 21.
    Lu, J, Wettstein, PJ, Higashimoto, Y, Appella, E, Celis, E 2001TAP-independent presentation of CTL epitopes by Trojan antigensJ Immunol16670637071PubMedGoogle Scholar
  22. 22.
    Watson, MA, Fleming, TP 1996Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancerCancer Res56860865PubMedGoogle Scholar
  23. 23.
    Watson, MA, Dintzis, S, Darrow, CM, Voss, LE, DiPersio, J, Jensen, R, Fleming, TP 1999Mammaglobin expression in primary, metastatic, and occult breast cancerCancer Res5930283031PubMedGoogle Scholar
  24. 24.
    Jaramillo, A, Majumder, K, Manna, PP, Fleming, TP, Doherty, G, Dipersio, JF, Mohanakumar, T 2002Identification of HLA-A3- restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancerInt J Cancer102499506CrossRefPubMedGoogle Scholar
  25. 25.
    Manna, PP, Jaramillo, A, Majumder, K, Campbell, LG, Fleming, TP, Dietz, JR, Dipersio, JF, Mohanakumar, T 2003Generation of CD8+ cytotoxic T lymphocytes against breast cancer cells by stimulation with mammaglobin-A-pulsed dendritic cellsBreast Cancer Res Treat79133136CrossRefPubMedGoogle Scholar
  26. 26.
    Narayanan, K, Jaramillo, A, Benshoff, ND, Campbell, LG, Fleming, TP, Dietz, JR, Mohanakumar, T 2004Response of established human breast tumors to vaccination with mammaglobin-A cDNAJ Natl Cancer Inst9613881396PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carsten T. Viehl
    • 1
    • 2
  • Yoshiyuki Tanaka
    • 1
    • 3
  • Tingting Chen
    • 1
  • Daniel M. Frey
    • 1
    • 2
  • Andrew Tran
    • 1
  • Timothy P. Fleming
    • 1
  • Timothy J. Eberlein
    • 1
  • Peter S. Goedegebuure
    • 1
  1. 1.Department of SurgeryWashington University School of Medicine, and Alvin J. Siteman Cancer CenterMOUSA
  2. 2.Department of Surgery, Divisions of General Surgery and Surgical ResearchUniversity of BaselSwitzerland
  3. 3.Graduate School of MedicineTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations