Reliability and Individual Specificity of EEG Microstate Characteristics

Abstract

Electroencephalography (EEG) microstates (MSs) are defined as quasi-stable topographies that represent global coherent activation. Alternations in EEG MSs have been reported in numerous neuropsychiatric disorders. Transferring the results of these studies into clinical practice requires not only high reliability but also sufficient individual specificity. Nevertheless, whether the amount of data used in microstate analysis influences reliability and how much individual information is provided by EEG MSs are unclear. In the current study, we aimed to assess the within-subject consistency and between-subject differences in the characteristics of EEG MSs. Two sets of eyes-closed resting-state EEG recordings were collected from 54 young, healthy participants on two consecutive days. The Raven Advanced Progressive Matrices test was conducted to assess general fluid intelligence (gF). We obtained four MSs (labeled A, B, C and D) through EEG microstate analysis. EEG MS characteristics including traditional features (the global explained variances, mean durations, coverages, occurrences and transition probabilities), the Hurst exponents and temporal dynamic features (the autocorrelation functions and the partial autocorrelation functions) were calculated and evaluated. The data with a duration greater than 2 min showed moderate to high reliability and individual specificity. The mean duration and coverage of MS C were significantly correlated with the gF score. The dynamic features showed a higher identification accuracy and were more significantly correlated with gF than the traditional MS features. These findings reveal that EEG microstate characteristics are reliably unique in single subjects and possess abundant inter-individual variability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al Zoubi O, Mayeli A, Tsuchiyagaito A, Misaki M, Zotev V, Refai H, Paulus M, Bodurka J, Tulsa I (2019) EEG microstates temporal dynamics differentiate individuals with mood and anxiety disorders from healthy subjects. Front Hum Neurosci 13:56. https://doi.org/10.3389/fnhum.2019.00056

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andellini M, Cannata V, Gazzellini S, Bernardi B, Napolitano A (2015) Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review. J Neurosci Methods 253:183–192. https://doi.org/10.1016/j.jneumeth.2015.05.020

    Article  PubMed  Google Scholar 

  3. Andreou C et al (2014) Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates. Schizophr Res 152:513–520. https://doi.org/10.1016/j.schres.2013.12.008

    Article  PubMed  Google Scholar 

  4. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett 59:381. https://doi.org/10.1103/PhysRevLett.59.381

    CAS  Article  PubMed  Google Scholar 

  5. Bocanegra BR, Poletiek FH, Ftitache B, Clark A (2019) Intelligent problem-solvers externalize cognitive operations. Nat Hum Behav 3:136–142. https://doi.org/10.1038/s41562-018-0509-y

    Article  PubMed  Google Scholar 

  6. Breakspear M (2017) Dynamic models of large-scale brain activity. Nat Neurosci 20:340–352. https://doi.org/10.1038/nn.4497

    CAS  Article  PubMed  Google Scholar 

  7. Brechet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J (2019) Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage 194:82–92. https://doi.org/10.1016/j.neuroimage.2019.03.029

    Article  Google Scholar 

  8. Bressler L (1995) Large-scale cortical networks and cognition. Brain Res Rev 20:288–304. https://doi.org/10.1016/0165-0173(94)00016-i

    CAS  Article  PubMed  Google Scholar 

  9. Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170. https://doi.org/10.1016/j.neuroimage.2010.02.052

    Article  Google Scholar 

  10. Brodbeck V et al (2012) EEG microstates of wakefulness and NREM sleep. Neuroimage 62:2129–2139. https://doi.org/10.1016/j.neuroimage.2012.05.060

    Article  PubMed  Google Scholar 

  11. Cannon RL, Baldwin DR, Shaw TL, Diloreto DJ, Phillips SM, Scruggs AM, Riehl TC (2012) Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neurosci Lett 518:27–31. https://doi.org/10.1016/j.neulet.2012.04.035

    CAS  Article  PubMed  Google Scholar 

  12. Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS (2012) Emergence of stable functional networks in long-term human electroencephalography. J Neurosci 32:2703–2713. https://doi.org/10.1523/JNEUROSCI.5669-11.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523. https://doi.org/10.1162/089892902317362029

    Article  PubMed  Google Scholar 

  14. Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM (2017) Electroencephalographic resting-state networks: source localization of microstates. Brain Connect 7:671–682. https://doi.org/10.1089/brain.2016.0476

    Article  PubMed  PubMed Central  Google Scholar 

  15. D’Croz-Baron DF, Baker M, Michel CM, Karp T (2019) EEG microstates analysis in young adults with autism spectrum disorder during resting-state. Front Hum Neurosci 13:173. https://doi.org/10.3389/fnhum.2019.00173

    Article  PubMed  PubMed Central  Google Scholar 

  16. DelPozo-Banos M, Travieso CM, Weidemann CT, Alonso JB (2015) EEG biometric identification: a thorough exploration of the time-frequency domain. J Neural Eng 12:056019. https://doi.org/10.1088/1741-2560/12/5/056019

    Article  PubMed  Google Scholar 

  17. Demuru M et al (2017) Functional and effective whole brain connectivity using magnetoencephalography to identify monozygotic twin pairs. Sci Rep 7:9685. https://doi.org/10.1038/s41598-017-10235-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Doukhan P, Oppenheim G, Taqqu M (2002) Theory and applications of long-range dependence. Springer, Berlin

    Google Scholar 

  19. Finn ES et al (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18:1664–1671. https://doi.org/10.1038/nn.4135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Freeman WJ, Breakspear M (2007) Scale-free neocortical dynamics. Scholarpedia 2:1357. https://doi.org/10.4249/scholarpedia.1357

    Article  Google Scholar 

  21. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77. https://doi.org/10.1038/nrneurol.2009.215

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gray JR, Thompson PM (2004) Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5:471–482. https://doi.org/10.1038/nrn1405

    CAS  Article  PubMed  Google Scholar 

  23. Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–322. https://doi.org/10.1038/nn1014

    CAS  Article  PubMed  Google Scholar 

  24. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405. https://doi.org/10.1038/nmeth.1453

    CAS  Article  PubMed  Google Scholar 

  25. Gschwind M, Michel CM, Van De Ville D (2015) Long-range dependencies make the difference-Comment on “A stochastic model for EEG microstate sequence analysis”. Neuroimage 117:449–455. https://doi.org/10.1016/j.neuroimage.2015.05.062

    Article  PubMed  Google Scholar 

  26. Gschwind M et al (2016) Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis. Neuroimage Clin 12:466–477. https://doi.org/10.1016/j.nicl.2016.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gudmundsson S, Runarsson TP, Sigurdsson S, Eiriksdottir G, Johnsen K (2007) Reliability of quantitative EEG features. Clin Neurophysiol 118:2162–2171. https://doi.org/10.1016/j.clinph.2007.06.018

    Article  PubMed  Google Scholar 

  28. He BJ (2011) Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786–13795. https://doi.org/10.1523/JNEUROSCI.2111-11.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hearne LJ, Mattingley JB, Cocchi L (2016) Functional brain networks related to individual differences in human intelligence at rest. Sci Rep 6:32328. https://doi.org/10.1038/srep32328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Iturria-Medina Y, Carbonell FM, Evans AC, Alzheimer’s Disease Neuroimaging I (2018) Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage 179:40–50. https://doi.org/10.1016/j.neuroimage.2018.06.028

    Article  PubMed  Google Scholar 

  31. Jeganathan J, Breakspear M (2019) Are the ‘atoms of thought’longer in Lewy body dementia? Brain 142:1494–1497. https://doi.org/10.1093/brain/awz132

    Article  PubMed  Google Scholar 

  32. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12:231–242. https://doi.org/10.1038/nrn3000

    CAS  Article  PubMed  Google Scholar 

  33. Khanna A, Pascual-Leone A, Farzan F (2014) Reliability of resting-state microstate features in electroencephalography. PLoS ONE 9:e114163. https://doi.org/10.1371/journal.pone.0114163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113. https://doi.org/10.1016/j.neubiorev.2014.12.010

    Article  Google Scholar 

  35. Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211. https://doi.org/10.1007/s004060050088

    CAS  Article  PubMed  Google Scholar 

  36. Koenig T et al (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48. https://doi.org/10.1006/nimg.2002.1070

    Article  PubMed  Google Scholar 

  37. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288. https://doi.org/10.1016/0013-4694(87)90025-3

    CAS  Article  Google Scholar 

  38. Lehmann D et al (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156. https://doi.org/10.1016/j.pscychresns.2004.05.007

    Article  PubMed  Google Scholar 

  39. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21:1370–1377. https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lowen SB, Cash SS, Poo M-m, Teich MC (1997) Quantal neurotransmitter secretion rate exhibits fractal behavior. J Neurosci 17:5666–5677

    CAS  Article  Google Scholar 

  41. McMillan CT (2016) Neurodegenerative disease: MRI biomarkers: a precision medicine tool in neurology? Nat Rev Neurol 12:323–324. https://doi.org/10.1038/nrneurol.2016.51

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Meyer-Lindenberg A (2010) From maps to mechanisms through neuroimaging of schizophrenia. Nature 468:194–202. https://doi.org/10.1038/nature09569

    CAS  Article  PubMed  Google Scholar 

  43. Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 180:577–593. https://doi.org/10.1016/j.neuroimage.2017.11.062

    Article  Google Scholar 

  44. Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD (2016) The functional significance of EEG microstates: associations with modalities of thinking. Neuroimage 125:643–656. https://doi.org/10.1016/j.neuroimage.2015.08.023

    CAS  Article  PubMed  Google Scholar 

  45. Moretti P, Munoz MA (2013) Griffiths phases and the stretching of criticality in brain network. Nat Commun 4:2521. https://doi.org/10.1038/ncomms3521

    CAS  Article  PubMed  Google Scholar 

  46. Musaeus CS, Nielsen MS, Hogh P (2019) Microstates as disease and progression markers in patients with mild cognitive impairment. Front Neurosci 13:563. https://doi.org/10.3389/fnins.2019.00563

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nishida K et al (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin Neurophysiol 124:1106–1114. https://doi.org/10.1016/j.clinph.2013.01.005

    Article  PubMed  Google Scholar 

  48. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. https://doi.org/10.1109/10.391164

    CAS  Article  Google Scholar 

  49. Pascual-Marqui RD et al (2014) The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow J arXiv preprint arXiv

  50. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley H (1992) Long-range correlations in nucleotide sequences. Nature 356:168. https://doi.org/10.1038/356168a0

    CAS  Article  PubMed  Google Scholar 

  51. Poulsen AT, Pedroni A, Langer N, Hansen LK (2018) Microstate EEGlab toolbox: an introductory guide. https://doi.org/10.1101/289850

  52. Rajkumar R et al (2018) Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum Brain Mapp. https://doi.org/10.1002/hbm.24429

    Article  PubMed  Google Scholar 

  53. Raven J, Raven JC, Court JH (1998) Manual for Raven’s Advanced Progressive Matrices and vocabulary scales. Harcourt Assessment, San Antonio

    Google Scholar 

  54. Rieger K, Diaz Hernandez L, Baenninger A, Koenig T (2016) 15 Years of Microstate Research in Schizophrenia - Where Are We? A Meta-Analysis. Front Psychiatry 7:22. https://doi.org/10.3389/fpsyt.2016.00022

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E (2009) Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science 326:445–449. https://doi.org/10.1126/science.1174481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392. https://doi.org/10.1016/0013-4694(91)90203-g

    CAS  Article  PubMed  Google Scholar 

  57. Santarnecchi E et al (2017) EEG microstate correlates of fluid intelligence and response to cognitive training. Brain Topogr 30:502–520. https://doi.org/10.1007/s10548-017-0565-z

    Article  PubMed  Google Scholar 

  58. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature News 520:609. https://doi.org/10.1038/520609a

    CAS  Article  Google Scholar 

  59. Schumacher J et al (2019) Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain 142:1767–1782. https://doi.org/10.1093/brain/awz069

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwab S, Koenig T, Morishima Y, Dierks T, Federspiel A, Jann K (2015) Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI. Neuroimage 118:368–375. https://doi.org/10.1016/j.neuroimage.2015.06.001

    Article  PubMed  Google Scholar 

  61. Seitzman BA, Abell M, Bartley SC, Erickson MA, Bolbecker AR, Hetrick WP (2017) Cognitive manipulation of brain electric microstates. Neuroimage 146:533–543. https://doi.org/10.1016/j.neuroimage.2016.10.002

    Article  Google Scholar 

  62. Shah LM, Cramer JA, Ferguson MA, Birn RM, Anderson JS (2016) Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state. Brain Behav 6:e00456. https://doi.org/10.1002/brb3.456

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H (2013) Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proc Natl Acad Sci U S A 110:15419–15424. https://doi.org/10.1073/pnas.1312848110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tomescu MI et al (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? Schizophr Res 157:175–181. https://doi.org/10.1016/j.schres.2014.05.036

    Article  PubMed  Google Scholar 

  65. Tomescu MI et al (2018) From swing to cane: sex differences of EEG resting-state temporal patterns during maturation and aging. Dev Cogn Neurosci 31:58–66. https://doi.org/10.1016/j.dcn.2018.04.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242. https://doi.org/10.2307/25470707

    Article  PubMed  Google Scholar 

  67. Uhlhaas PJ, Grent T, Gross J (2018) Magnetoencephalography and translational neuroscience in psychiatry. JAMA Psychiatry 75:969–971. https://doi.org/10.1001/jamapsychiatry.2018.0775

    Article  PubMed  Google Scholar 

  68. Valizadeh SA, Riener R, Elmer S, Jancke L (2019) Decrypting the electrophysiological individuality of the human brain: identification of individuals based on resting-state EEG activity. Neuroimage 197:470–481. https://doi.org/10.1016/j.neuroimage.2019.04.005

    Article  PubMed  Google Scholar 

  69. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 107:18179–18184. https://doi.org/10.1073/pnas.1007841107

    Article  PubMed  Google Scholar 

  70. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321. https://doi.org/10.1152/jn.00783.2009

    Article  PubMed  Google Scholar 

  71. Vanderwal T, Eilbott J, Finn ES, Craddock RC, Turnbull A, Castellanos FX (2017) Individual differences in functional connectivity during naturalistic viewing conditions. NeuroImage 157:521–530. https://doi.org/10.1016/j.neuroimage.2017.06.027

    Article  PubMed  Google Scholar 

  72. Vernon PA (1983) Speed of information processing and general intelligence. Intelligence 7:53–70. https://doi.org/10.1016/0160-2896(83)90006-5

    Article  Google Scholar 

  73. von Wegner F, Tagliazucchi E, Laufs H (2017) Information-theoretical analysis of resting state EEG microstate sequences: non-Markovianity, non-stationarity and periodicities. Neuroimage 158:99–111. https://doi.org/10.1016/j.neuroimage.2017.06.062

    Article  Google Scholar 

  74. Wei Y, Ramautar JR, Colombo MA, Te Lindert BHW, Van Someren EJW (2018) EEG microstates indicate heightened somatic awareness in insomnia: toward objective assessment of subjective mental content. Front Psychiatry 9:395. https://doi.org/10.3389/fpsyt.2018.00395

    Article  PubMed  PubMed Central  Google Scholar 

  75. Woo CW, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20:365–377. https://doi.org/10.1038/nn.4478

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Zanesco AP, King BG, Skwara AC, Saron CD (2020) Within and between-person correlates of the temporal dynamics of resting EEG microstates. Neuroimage 211:116631. https://doi.org/10.1016/j.neuroimage.2020.116631

    Article  PubMed  Google Scholar 

  77. Zappasodi F et al (2019) EEG microstates distinguish between cognitive components of fluid reasoning. Neuroimage 189:560–573. https://doi.org/10.1016/j.neuroimage.2019.01.067

    Article  PubMed  Google Scholar 

  78. Zuo XN, Xing XX (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118. https://doi.org/10.1016/j.neubiorev.2014.05.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Center for Protein Sciences at Peking University in Beijing, China, for assistance with data acquisition and data analyses.

Funding

This work was supported by China’s National Strategic Basic Research Program (“973”) grant (2015CB856400), National Natural Science Foundation of China (Grant Nos. 81871427, 81671765, 81430037, 81727808, 81790650, 81790651 and 31421003), Beijing Municipal Natural Science Foundation (7172121), National Key Research and Development Program of China (Grant Nos. 2018YFC2000603 and 2017YFC0108900), Beijing Municipal Science & Technology Commission (Grant Nos. Z181100001518005, Z161100002616006 and Z171100000117012), the Guangdong key basic research Grant (2018B030332001) and Guangdong Pearl River Talents Plan (Grant No. 2016ZT06S220).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qihong Zou or Jia-Hong Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (the Institutional Review Board of Peking University #2017-05-01) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

All the participants provided informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Christoph M. Michel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1202 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, J., Zou, G. et al. Reliability and Individual Specificity of EEG Microstate Characteristics. Brain Topogr 33, 438–449 (2020). https://doi.org/10.1007/s10548-020-00777-2

Download citation

Keywords

  • EEG microstate
  • Individual specificity
  • Long-range temporal dependence