Skip to main content
Log in

Magnetic Resonance Imaging of Human Olfactory Dysfunction

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

A Correction to this article was published on 18 October 2019

This article has been updated

Abstract

Olfactory dysfunctions affect a larger portion of population (up to 15% with partial olfactory loss, and 5% with complete olfactory loss) as compared to other sensory dysfunctions (e.g. auditory or visual) and have a negative impact on the life quality. The impairment of olfactory functions may happen at each stage of the olfactory system, from epithelium to cortex. Non-invasive neuroimaging techniques such as the magnetic resonance imaging (MRI) have advanced the understanding of the advent and progress of olfactory dysfunctions in humans. The current review summarizes recent MRI studies on human olfactory dysfunction to present an updated and comprehensive picture of the structural and functional alterations in the central olfactory system as a consequence of olfactory loss and regain. Furthermore, the review also highlights recent progress on optimizing the olfactory functional MRI as well as new approaches for data processing that are promising for future clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 18 October 2019

    The original version of this article unfortunately contained a mistake. The spelling of the Yoshi Akshita name was incorrect. The correct name should be Joshi Akshita The original article has been corrected.

  • 18 October 2019

    The original version of this article unfortunately contained a mistake. The spelling of the Yoshi Akshita name was incorrect. The correct name should be Joshi Akshita The original article has been corrected.

References

  • Albrecht J, Kopietz R, Frasnelli J, Wiesmann M, Hummel T, Lundstrom JN (2010) The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data. Brain Res Rev 62:183–196

    PubMed  Google Scholar 

  • Arshamian A, Iannilli E, Gerber JC, Willander J, Persson J, Seo HS, Hummel T, Larsson M (2013) The functional neuroanatomy of odor evoked autobiographical memories cued by odors and words. Neuropsychologia 51:123–131

    PubMed  Google Scholar 

  • Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325

    PubMed  Google Scholar 

  • Baba T, Kikuchi A, Hirayama K, Nishio Y, Hosokai Y, Kanno S, Hasegawa T, Sugeno N, Konno M, Suzuki K, Takahashi S, Fukuda H, Aoki M, Itoyama Y, Mori E, Takeda A (2012) Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135:161–169

    PubMed  Google Scholar 

  • Bensafi M, Porter J, Pouliot S, Mainland J, Johnson B, Zelano C, Young N, Bremner E, Aframian D, Khan R, Sobel N (2003) Olfactomotor activity during imagery mimics that during perception. Nat Neurosci 6:1142–1144

    CAS  PubMed  Google Scholar 

  • Bensafi M, Sobel N, Khan RM (2007) Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. J Neurophysiol 98:3254–3262

    PubMed  Google Scholar 

  • Bitter T, Bruderle J, Gudziol H, Burmeister HP, Gaser C, Guntinas-Lichius O (2010a) Gray and white matter reduction in hyposmic subjects—a voxel-based morphometry study. Brain Res 1347:42–47

    CAS  PubMed  Google Scholar 

  • Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Guntinas-Lichius O, Gaser C (2010b) Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses 35:407–415

    PubMed  Google Scholar 

  • Bramerson A, Johansson L, Ek L, Nordin S, Bende M (2004) Prevalence of olfactory dysfunction: the skovde population-based study. Laryngoscope 114:733–737

    PubMed  Google Scholar 

  • Braun JJ, Noblet V, Durand M, Scheidecker S, Zinetti-Bertschy A, Foucher J, Marion V, Muller J, Riehm S, Dollfus H, Kremer S (2014) Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome. Clin Genet 86:521–529

    CAS  PubMed  Google Scholar 

  • Buschhuter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T (2008) Correlation between olfactory bulb volume and olfactory function. Neuroimage 42:498–502

    CAS  PubMed  Google Scholar 

  • Campabadal A, Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C (2017) Brain correlates of progressive olfactory loss in Parkinson’s disease. Parkinsonism Relat Disord 41:44–50

    PubMed  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    PubMed  Google Scholar 

  • Croy I, Hummel T (2017) Olfaction as a marker for depression. J Neurol 264:631–638

    CAS  PubMed  Google Scholar 

  • Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life—an updated review. Chem Senses 39:185–194

    PubMed  Google Scholar 

  • Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423

    PubMed  Google Scholar 

  • Dade LA, Zatorre RJ, Evans AC, Jones-Gotman M (2001) Working memory in another dimension: functional imaging of human olfactory working memory. Neuroimage 14:650–660

    CAS  PubMed  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227

    CAS  PubMed  Google Scholar 

  • de Araujo IE, Rolls ET, Velazco MI, Margot C, Cayeux I (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679

    PubMed  Google Scholar 

  • Djordjevic J, Zatorre RJ, Petrides M, Boyle JA, Jones-Gotman M (2005) Functional neuroimaging of odor imagery. Neuroimage 24:791–801

    CAS  PubMed  Google Scholar 

  • Dwyer DB, Falkai P, Koutsouleris N (2018) Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol 14:91–118

    PubMed  Google Scholar 

  • Erb K, Bohner G, Harms L, Goektas O, Fleiner F, Dommes E, Schmidt FA, Dahlslett B, Ludemann L (2012) Olfactory function in patients with multiple sclerosis: a diffusion tensor imaging study. J Neurol Sci 316:56–60

    PubMed  Google Scholar 

  • Erb-Eigner K, Bohner G, Goektas O, Harms L, Holinski F, Schmidt FA, Dahlslett B, Dommes E, Asbach P, Ludemann L (2014) Tract-based spatial statistics of the olfactory brain in patients with multiple sclerosis. J Neurol Sci 346:235–240

    PubMed  Google Scholar 

  • Fernandes HM, Van Hartevelt TJ, Boccard SG, Owen SL, Cabral J, Deco G, Green AL, Fitzgerald JJ, Aziz TZ, Kringelbach ML (2015) Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome. New J Phys 17:015001

    Google Scholar 

  • Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, Gleesborg C, Moller A, Ovesen T, Kringelbach ML (2017) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flohr EL, Arshamian A, Wieser MJ, Hummel C, Larsson M, Muhlberger A, Hummel T (2014) The fate of the inner nose: odor imagery in patients with olfactory loss. Neuroscience 268:118–127

    CAS  PubMed  Google Scholar 

  • Frasnelli J, Hummel T (2005) Olfactory dysfunction and daily life. Eur Arch Otorhinolaryngol 262:231–235

    PubMed  Google Scholar 

  • Frasnelli J, Fark T, Lehmann J, Gerber J, Hummel T (2013) Brain structure is changed in congenital anosmia. Neuroimage 83:1074–1080

    PubMed  Google Scholar 

  • Frohner JH, Teckentrup V, Smolka MN, Kroemer NB (2019) Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects. Neuroimage 195:174–189

    PubMed  Google Scholar 

  • Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand AF, Williams SC, Brammer MJ (2008) Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 63:656–662

    PubMed  Google Scholar 

  • Gellrich J, Han P, Manesse C, Betz A, Junghanns A, Raue C, Schriever VA, Hummel T (2018) Brain volume changes in hyposmic patients before and after olfactory training. Laryngoscope 128:1531–1536

    PubMed  Google Scholar 

  • Georgiopoulos C, Witt ST, Haller S, Dizdar N, Zachrisson H, Engstrom M, Larsson EM (2018) Olfactory fMRI: implications of stimulation length and repetition time. Chem Senses 43:389–398

    PubMed  Google Scholar 

  • Gonzalez J, Barros-Loscertales A, Pulvermuller F, Meseguer V, Sanjuan A, Belloch V, Avila C (2006) Reading cinnamon activates olfactory brain regions. Neuroimage 32:906–912

    PubMed  Google Scholar 

  • Gottfried JA (2010) Central mechanisms of odour object perception. Nat Rev Neurosci 11:628–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottfried JA, Zald DH (2005) On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res Rev 50:287–304

    PubMed  Google Scholar 

  • Gudziol V, Buschhuter D, Abolmaali N, Gerber J, Rombaux P, Hummel T (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis—a longitudinal study. Brain 132:3096–3101

    CAS  PubMed  Google Scholar 

  • Gullmar D, Seeliger T, Gudziol H, Teichgraber UKM, Reichenbach JR, Guntinas-Lichius O, Bitter T (2017) Improvement of olfactory function after sinus surgery correlates with white matter properties measured by diffusion tensor imaging. Neuroscience 360:190–196

    PubMed  Google Scholar 

  • Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H (2007) Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 22:839–842

    PubMed  Google Scholar 

  • Haehner A, Rodewald A, Gerber JC, Hummel T (2008) Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch Otolaryngol Head Neck Surg 134:621–624

    PubMed  Google Scholar 

  • Hagemeier J, Woodward MR, Rafique UA, Amrutkar CV, Bergsland N, Dwyer MG, Benedict R, Zivadinov R, Szigeti K (2016) Odor identification deficit in mild cognitive impairment and Alzheimer’s disease is associated with hippocampal and deep gray matter atrophy. Psychiatry Res 255:87–93

    Google Scholar 

  • Han P, Whitcroft KL, Fischer J, Gerber J, Cuevas M, Andrews P, Hummel T (2017) Olfactory brain gray matter volume reduction in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 7:551–556

    PubMed  Google Scholar 

  • Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018a) Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J Neurotrauma 35:2632–2640

    PubMed  Google Scholar 

  • Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018b) Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J Neurol 265:2322–2332

    PubMed  Google Scholar 

  • Han P, Croy I, Raue C, Bensafi M, Larsson M, Cavazzana A, Hummel T (2019) Neural processing of odor-associated words: an fMRI study in patients with acquired olfactory loss. Brain Imaging Behav. https://doi.org/10.1007/s11682-019-00062-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henkin RI, Levy LM (2002) Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes. J Comput Assist Tomogr 26:39–61

    PubMed  Google Scholar 

  • Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, Frithsen A, Johnson A, Tipper CM, Miller MB, Grafton ST, Carlson JM (2013) Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc Natl Acad Sci USA 110:6169–6174

    PubMed  PubMed Central  Google Scholar 

  • Hummel T, Bensafi M, Nikolaus J, Knecht M, Laing DG, Schaal B (2007) Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behav Brain Res 180:133–138

    PubMed  Google Scholar 

  • Hummel T, Fliessbach K, Abele M, Okulla T, Reden J, Reichmann H, Wullner U, Haehner A (2010) Olfactory FMRI in patients with Parkinson’s disease. Front Integr Neurosci 4:125

    PubMed  PubMed Central  Google Scholar 

  • Hummel T, Urbig A, Huart C, Duprez T, Rombaux P (2015) Volume of olfactory bulb and depth of olfactory sulcus in 378 consecutive patients with olfactory loss. J Neurol 262:1046–1051

    PubMed  Google Scholar 

  • Hummel T, Whitcroft KL, Andrews P, Altundag A, Cinghi C, Costanzo RM, Damm M, Frasnelli J, Gudziol H, Gupta N, Haehner A, Holbrook E, Hong SC, Hornung D, Huttenbrink KB, Kamel R, Kobayashi M, Konstantinidis I, Landis BN, Leopold DA, Macchi A, Miwa T, Moesges R, Mullol J, Mueller CA, Ottaviano G, Passali GC, Philpott C, Pinto JM, Ramakrishnan VJ, Rombaux P, Roth Y, Schlosser RA, Shu B, Soler G, Stjarne P, Stuck BA, Vodicka J, Welge-Luessen A (2016) Position paper on olfactory dysfunction. Rhinology 56:1–30

    CAS  PubMed  Google Scholar 

  • Iannilli E, Gerber J, Frasnelli J, Hummel T (2007) Intranasal trigeminal function in subjects with and without an intact sense of smell. Brain Res 1139:235–244

    CAS  PubMed  Google Scholar 

  • Iannilli E, Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Chopra AP, Hummel T (2011) Differences in anosmic and normosmic group in bimodal odorant perception: a functional-MRI study. Rhinology 49:458–463

    CAS  PubMed  Google Scholar 

  • Ibarretxe-Bilbao N, Junque C, Marti MJ, Valldeoriola F, Vendrell P, Bargallo N, Zarei M, Tolosa E (2010) Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord 25:1888–1894

    PubMed  Google Scholar 

  • Jones DK, Leemans A (2011) Diffusion tensor imaging. Magn Reson Neuroimaging 711:127–144

    CAS  Google Scholar 

  • Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    PubMed  Google Scholar 

  • Kareken DA, Sabri M, Radnovich AJ, Claus E, Foresman B, Hector D, Hutchins GD (2004) Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. Neuroimage 22:456–465

    PubMed  Google Scholar 

  • Karstensen HG, Vestergaard M, Baare WFC, Skimminge A, Djurhuus B, Ellefsen B, Bruggemann N, Klausen C, Leffers AM, Tommerup N, Siebner HR (2018) Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions. Brain Imaging Behav 12:1569–1582

    PubMed  Google Scholar 

  • Kjelvik G, Saltvedt I, White LR, Stenumgard P, Sletvold O, Engedal K, Skatun K, Lyngvaer AK, Steffenach HA, Haberg AK (2014) The brain structural and cognitive basis of odor identification deficits in mild cognitive impairment and Alzheimer’s disease. BMC Neurol 14:168

    PubMed  PubMed Central  Google Scholar 

  • Kleinhans NM, Reilly M, Blake M, Greco G, Sweigert J, Davis GE, Velasquez F, Reitz F, Shusterman D, Dager SR (2019) FMRI correlates of olfactory processing in typically-developing school-aged children. Psychiatry Res Neuroimaging 283:67–76

    PubMed  Google Scholar 

  • Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689

    PubMed  Google Scholar 

  • Koehler L, Fournel A, Albertowski K, Roessner V, Gerber J, Hummel C, Hummel T, Bensafi M (2018) Impaired odor perception in autism spectrum disorder is associated with decreased activity in olfactory cortex. Chem Senses 43:627–634

    CAS  PubMed  Google Scholar 

  • Kollndorfer K, Fischmeister FP, Kowalczyk K, Hoche E, Mueller CA, Trattnig S, Schopf V (2015a) Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin 9:401–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kollndorfer K, Jakab A, Mueller CA, Trattnig S, Schopf V (2015b) Effects of chronic peripheral olfactory loss on functional brain networks. Neuroscience 310:589–599

    CAS  PubMed  Google Scholar 

  • Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GKW (2018) Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord 51:241–249

    PubMed  PubMed Central  Google Scholar 

  • Lee EY, Eslinger PJ, Du G, Kong L, Lewis MM, Huang X (2014) Olfactory-related cortical atrophy is associated with olfactory dysfunction in Parkinson’s disease. Mov Disord 29:1205–1208

    PubMed  PubMed Central  Google Scholar 

  • Levy LM, Henkin RI, Hutter A, Lin CS, Schellinger D (1998) Mapping brain activation to odorants in patients with smell loss by functional MRI. J Comput Assist Tomogr 22:96–103

    CAS  PubMed  Google Scholar 

  • Levy LM, Henkin RI, Lin CS, Finley A (1999a) Rapid imaging of olfaction by functional MRI (fMRI): identification of presence and type of hyposmia. J Comput Assist Tomogr 23:767–775

    CAS  PubMed  Google Scholar 

  • Levy LM, Henkin RI, Lin CS, Hutter A, Schellinger D (1999b) Odor memory induces brain activation as measured by functional MRI. J Comput Assist Tomogr 23:487–498

    CAS  PubMed  Google Scholar 

  • Li W, Howard JD, Gottfried JA (2010) Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer’s disease. Brain 133:2714–2726

    PubMed  PubMed Central  Google Scholar 

  • Lotsch J, Hummel T, Ultsch A (2016) Machine-learned pattern identification in olfactory subtest results. Sci Rep 6:35688

    PubMed  PubMed Central  Google Scholar 

  • Lotsch J, Kringel D, Hummel T (2019) Machine learning in human olfactory research. Chem Senses 44:11–22

    PubMed  Google Scholar 

  • Lu J, Wang X, Qing Z, Li Z, Zhang W, Liu Y, Yuan L, Cheng L, Li M, Zhu B, Zhang X, Yang QX, Zhang B (2018) Detectability and reproducibility of the olfactory fMRI signal under the influence of magnetic susceptibility artifacts in the primary olfactory cortex. Neuroimage 178:613–621

    PubMed  Google Scholar 

  • Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen HU, Konrad C, Strohle A, Wittmann A, Gerlach AL, Pfleiderer B, Arolt V, Kircher T (2015) Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. J Affect Disord 184:182–192

    PubMed  Google Scholar 

  • Mandairon N, Linster C (2009) Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 101:2204–2209

    PubMed  Google Scholar 

  • Marine N, Boriana A (2014) Olfactory markers of depression and Alzheimer’s disease. Neurosci Biobehav Rev 45:262–270

    CAS  PubMed  Google Scholar 

  • Mazal PP, Haehner A, Hummel T (2016) Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function. Eur Arch Otorhinolaryngol 273:1–7

    PubMed  Google Scholar 

  • McGann JP (2015) Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learn Mem 22:567–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGann JP (2017) Poor human olfaction is a 19th-century myth. Science 356:597

    CAS  Google Scholar 

  • Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER (2001) Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg 127:497–503

    CAS  PubMed  Google Scholar 

  • Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21:325–340

    CAS  PubMed  Google Scholar 

  • Moon WJ, Park M, Hwang M, Kim JK (2018) Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. AJNR Am J Neuroradiol 39:2320–2325

    PubMed  PubMed Central  Google Scholar 

  • Morrot G, Bonny JM, Lehallier B, Zanca M (2013) fMRI of human olfaction at the individual level: interindividual variability. J Magn Reson Imaging 37:92–100

    PubMed  Google Scholar 

  • Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T (2005a) Olfactory bulb volumes in patients with idiopathic Parkinson’s disease a pilot study. J Neural Transm 112:1363–1370

    CAS  PubMed  Google Scholar 

  • Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T (2005b) Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. NeuroReport 16:475–478

    PubMed  Google Scholar 

  • Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. JAMA 288:2307–2312

    PubMed  Google Scholar 

  • Murphy C, Jernigan TL, Fennema-Notestine C (2003) Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J Int Neuropsychol Soc 9:459–471

    PubMed  Google Scholar 

  • Murphy C, Cerf-Ducastel B, Calhoun-Haney R, Gilbert PE, Ferdon S (2005) ERP, fMRI and functional connectivity studies of brain response to odor in normal aging and Alzheimer’s disease. Chem Senses 30(Suppl 1):i170–171

    PubMed  Google Scholar 

  • Nigri A, Ferraro S, D’Incerti L, Critchley HD, Bruzzone MG, Minati L (2013) Connectivity of the amygdala, piriform, and orbitofrontal cortex during olfactory stimulation: a functional MRI study. NeuroReport 24:171–175

    PubMed  Google Scholar 

  • Olofsson JK, Gottfried JA (2015) The muted sense: neurocognitive limitations of olfactory language. Trends Cogn Sci 19:314–321

    PubMed  PubMed Central  Google Scholar 

  • Pellegrino R, Hahner A, Bojanowski V, Hummel C, Gerber J, Hummel T (2016) Olfactory function in patients with hyposmia compared to healthy subjects—an fMRI study. Rhinology 54:374–381

    CAS  PubMed  Google Scholar 

  • Pellegrino R, Han P, Reither N, Hummel T (2019) Effectiveness of olfactory training on different severities of posttraumatic loss of smell. Laryngoscope. https://doi.org/10.1002/lary.27832

    Article  PubMed  Google Scholar 

  • Peng P, Gu H, Xiao W, Si LF, Wang JF, Wang SK, Zhai RY, Wei YX (2013) A voxel-based morphometry study of anosmic patients. Br J Radiol 86:20130207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plailly J, Delon-Martin C, Royet JP (2012) Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum Brain Mapp 33:224–234

    PubMed  Google Scholar 

  • Pomp J, Bestgen AK, Schulze P, Muller CJ, Citron FMM, Suchan B, Kuchinke L (2018) Lexical olfaction recruits olfactory orbitofrontal cortex in metaphorical and literal contexts. Brain Lang 179:11–21

    PubMed  Google Scholar 

  • Reichert JL, Schopf V (2017) Olfactory loss and regain: lessons for neuroplasticity. Neuroscientist. https://doi.org/10.1177/1073858417703910

    Article  PubMed  Google Scholar 

  • Reichert JL, Postma EM, Smeets PAM, Boek WM, de Graaf K, Schopf V, Boesveldt S (2018) Severity of olfactory deficits is reflected in functional brain networks—an fMRI study. Hum Brain Mapp 39:3166–3177

    PubMed  PubMed Central  Google Scholar 

  • Rolls ET (2011) Chemosensory learning in the cortex. Front Syst Neurosci 5:78

    PubMed  PubMed Central  Google Scholar 

  • Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006a) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439

    PubMed  Google Scholar 

  • Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006b) Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 116:901–905

    PubMed  Google Scholar 

  • Rombaux P, Weitz H, Mouraux A, Nicolas G, Bertrand B, Duprez T, Hummel T (2006c) Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch Otolaryngol Head Neck Surg 132:1346–1351

    PubMed  Google Scholar 

  • Rombaux P, Potier H, Bertrand B, Duprez T, Hummel T (2008) Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 22:598–601

    PubMed  Google Scholar 

  • Rombaux P, Potier H, Markessis E, Duprez T, Hummel T (2010) Olfactory bulb volume and depth of olfactory sulcus in patients with idiopathic olfactory loss. Eur Arch Otorhinolaryngol 267:1551–1556

    PubMed  Google Scholar 

  • Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173

    PubMed  Google Scholar 

  • Santos DV, Reiter ER, DiNardo LJ, Costanzo RM (2004) Hazardous events associated with impaired olfactory function. Arch Otolaryngol Head Neck Surg 130:317–319

    PubMed  Google Scholar 

  • Segura B, Baggio HC, Solana E, Palacios EM, Vendrell P, Bargallo N, Junque C (2013) Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav Brain Res 246:148–153

    PubMed  Google Scholar 

  • Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundstrom JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23:2448–2456

    PubMed  Google Scholar 

  • Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286

    CAS  PubMed  Google Scholar 

  • Sobhani S, Rahmani F, Aarabi MH, Sadr AV (2019) Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: diffusion MRI reveals new insight. Brain Imaging Behav 13:210–219

    PubMed  Google Scholar 

  • Stevenson RJ (2010) An initial evaluation of the functions of human olfaction. Chem Senses 35:3–20

    PubMed  Google Scholar 

  • Su M, Wang S, Fang W, Zhu Y, Li R, Sheng K, Zou D, Han Y, Wang X, Cheng O (2015) Alterations in the limbic/paralimbic cortices of Parkinson’s disease patients with hyposmia under resting-state functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat Disord 21:698–703

    PubMed  Google Scholar 

  • Takeda A, Saito N, Baba T, Kikuchi A, Sugeno N, Kobayashi M, Hasegawa T, Itoyama Y (2010) Functional imaging studies of hyposmia in Parkinson’s disease. J Neurol Sci 289:36–39

    PubMed  Google Scholar 

  • Temmel AF, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T (2002) Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg 128:635–641

    PubMed  Google Scholar 

  • Tobia MJ, Yang QX, Karunanayaka P (2016) Intrinsic intranasal chemosensory brain networks shown by resting-state functional MRI. NeuroReport 27:527–531

    CAS  PubMed  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    PubMed  Google Scholar 

  • Van Hartevelt TJ, Kringelbach ML (2011) The olfactory system. In: Mai JK, Paxinos G (eds) The human nervous system. Academic Press, San Diego, pp 1219–1238

    Google Scholar 

  • Vasavada MM, Wang J, Eslinger PJ, Gill DJ, Sun X, Karunanayaka P, Yang QX (2015) Olfactory cortex degeneration in Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 45:947–958

    PubMed  Google Scholar 

  • Vasavada MM, Martinez B, Wang J, Eslinger PJ, Gill DJ, Sun X, Karunanayaka P, Yang QX (2017) Central olfactory dysfunction in Alzheimer’s disease and mild cognitive impairment: a functional MRI study. J Alzheimers Dis 59:359–368

    CAS  PubMed  Google Scholar 

  • Vennemann MM, Hummel T, Berger K (2008) The association between smoking and smell and taste impairment in the general population. J Neurol 255:1121–1126

    PubMed  Google Scholar 

  • Vetter NC, Steding J, Jurk S, Ripke S, Mennigen E, Smolka MN (2017) Reliability in adolescent fMRI within two years—a comparison of three tasks. Sci Rep 7:2287

    PubMed  PubMed Central  Google Scholar 

  • Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J (2011) Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am J Neuroradiol 32:677–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun X, Yang QX (2014) Methods for olfactory fMRI studies: implication of respiration. Hum Brain Mapp 35:3616–3624

    PubMed  Google Scholar 

  • Whitcroft KL, Fischer J, Han P, Raue C, Bensafi M, Gudziol V, Andrews P, Hummel T (2018) Structural plasticity of the primary and secondary olfactory cortices: increased gray matter volume following surgical treatment for chronic rhinosinusitis. Neuroscience 395:22–34

    CAS  PubMed  Google Scholar 

  • Woo CW, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20:365–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Yu C, Fan F, Zhang K, Zhu C, Wu T, Li K, Chan P (2011) Correlation between progressive changes in piriform cortex and olfactory performance in early Parkinson’s disease. Eur Neurol 66:98–105

    PubMed  Google Scholar 

  • Yoshi A, Han P, Faria V, Hummel T (Unpublished) Top-down processing of olfactory associated information in congenital anosmia: an fMRI study

  • Yao L, Pinto JM, Yi X, Li L, Peng P, Wei Y (2014) Gray matter volume reduction of olfactory cortices in patients with idiopathic olfactory loss. Chem Senses 39:755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Yi X, Pinto JM, Yuan X, Guo Y, Liu Y, Wei Y (2018) Olfactory cortex and olfactory bulb volume alterations in patients with post-infectious olfactory loss. Brain Imaging Behav 12:1355–1362

    PubMed  Google Scholar 

  • Yoneyama N, Watanabe H, Kawabata K, Bagarinao E, Hara K, Tsuboi T, Tanaka Y, Ohdake R, Imai K, Masuda M, Hattori T, Ito M, Atsuta N, Nakamura T, Hirayama M, Maesawa S, Katsuno M, Sobue G (2018) Severe hyposmia and aberrant functional connectivity in cognitively normal Parkinson’s disease. PLoS ONE 13:e0190072

    PubMed  PubMed Central  Google Scholar 

  • Yousem DM, Geckle RJ, Bilker WB, McKeown DA, Doty RL (1996) Posttraumatic olfactory dysfunction: MR and clinical evaluation. AJNR Am J Neuroradiol 17:1171–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousem DM, Geckle RJ, Bilker WB, Doty RL (1998) Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Ann N Y Acad Sci 855:546–555

    CAS  PubMed  Google Scholar 

  • Zelano C, Mohanty A, Gottfried JA (2011) Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72:178–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C (2019) Characterizing functional pathways of the human olfactory system. Elife 8:e47177

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Han.

Additional information

Handling Editor: Christoph M. Michel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published together in Brain Topography on the ‘‘Special Issue: Current Opinions in Brain Imaging Methods and Applications".

The original version of this article was revised: The spelling of the Joshi Akshita name was incorrectly published. It has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Zang, Y., Akshita, J. et al. Magnetic Resonance Imaging of Human Olfactory Dysfunction. Brain Topogr 32, 987–997 (2019). https://doi.org/10.1007/s10548-019-00729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-019-00729-5

Keywords

Navigation