Skip to main content
Log in

A Data-Driven Multi-scale Technique for fMRI Mapping of the Human Somatosensory Cortex

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

A previously introduced Bayesian non-parametric multi-scale technique, called iterated Multigrid Priors (iMGP) method, is used to map the topographic organization of human primary somatosensory cortex (S1). We analyze high spatial resolution fMRI data acquired at ultra-high field (UHF, 7T) in individual subjects during vibrotactile stimulation applied to each distal phalange of the left hand digits using both a travelling-wave (TW) and event-related (ER) paradigm design. We compare the somatotopic digit representations generated in S1 using the iMGP method with those obtained using established fMRI paradigms and analysis techniques: Fourier-based analysis of travelling-wave data and General Linear Model (GLM) analysis of event-related data. Maps derived with the iMGP method are similar to those derived with the standard analysis, but in contrast to the Fourier-based analysis, the iMGP method reveals overlap of activity from adjacent digit representations in S1. These findings validate the use of the iMGP method as an alternative to study digit representations in S1, particularly with the TW design as an attractive means to study cortical reorganization in patient populations such dystonia and carpal tunnel syndrome, where the degree of spatial overlap of cortical finger representations is of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Besle J, Sanchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D (2013) Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs. J Neurophysiol 109:2293–2305

    Article  Google Scholar 

  • Besle J, Sanchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D (2014) Event-Related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 35:2027–2043

    Article  Google Scholar 

  • Blake DT, Byl NN, Cheung S, Bedenbaugh P, NagarajanS Lamb M, Merzenich M (2002) Sensory representation abnormalities that parallel focal hand dystonia in a primate model. Mot Res 19(4):347–357

    Google Scholar 

  • Butterworth S, Francis S, Kelly E, McGlone F, Bowtell R, Sawle GV (2003) Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 18(6):673–682

    Article  Google Scholar 

  • Caticha N, Da Rocha Amaral S, Rabbani SR (2004) Multigrid priors for fMRI time series analysis. AIP Conf Proc 735:27–34

    Article  Google Scholar 

  • Da Rocha Amaral S (2014) Individual trial analysis for 7T fMRI data by a data-driven multi scale approach. Brain Topogr 27(2):213–227

    Article  Google Scholar 

  • Da Rocha Amaral S, Rabbani SR, Caticha N (2004) Multigrid prior for a Bayesian approach to fMRI. Neuroimage 23:654–662

    Article  Google Scholar 

  • Da Rocha Amaral S, Rabbani SR, Caticha N (2007) BOLD response analysis by iterated local multigrid priors. Neuroimage 36(2):361–369

    Article  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    Article  CAS  Google Scholar 

  • Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 15 39(2):647–660

    Article  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189–210

    Article  Google Scholar 

  • Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somato-sensory stimulation. Neuroimage 34:1060–1073

    Article  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337

    Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58:400–411

    CAS  PubMed  Google Scholar 

  • Kriegeskorte N, Mur M, Bandettini P (2008) Representational similarity analysis—connecting the branches of systems neuroscience. Front Syst Neurosci 2:4

    Article  Google Scholar 

  • Martuzzi R, van der Zwaag W, Farthouat J, Gruetter R, Blanke O (2014) Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus. Hum Brain Map 35:213–226

    Article  Google Scholar 

  • Meyer JR, Roychowdhury S, Russell EJ, Callahan C, Gitelman D, Mesulam MM (1996) Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. AJNR 17:1699–1706

    CAS  PubMed  Google Scholar 

  • Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006) Somatosensory cortical plasticity in carpal tunnel syndrome–a cross-sectional fMRI evaluation. Neuroimage 31(2):520–530

    Article  Google Scholar 

  • Nelson AJ, Chen R (2008) Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex 18:2341–2351

    Article  Google Scholar 

  • Nelson AJ, Blake DT, Chen R (2009) Digit-specific aberrations in the primary somatosensory cortex in Writer’s cramp. Ann Neurol 66(2):146–154

    Article  Google Scholar 

  • Nestares O, Heeger DJ (2000) Robust multiresolution alignment of MRI brain volumes. Magn Reson Med 43:705–715

    Article  CAS  Google Scholar 

  • Overduin S, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23:462–472

    Article  Google Scholar 

  • Overduin SA, Servos P (2008) Symmetric sensorimotor somatotopy. PLoS ONE 3:e1505

    Article  Google Scholar 

  • Pons TP, Wall JT, Garraghty PE, Cusick CG, Kaas JH (1987) Consistent features of the representation of the hand in area 3b of macaque monkeys. Somatosens Res 4:309–331

    Article  CAS  Google Scholar 

  • Poole M, Bowtell R (2008) Volume parcellation for improved dynamic shimming. Magn Reson Mater Phys Biol Med 21:31–40

    Article  Google Scholar 

  • Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex individual subjects with 7T functional MRI. J Neurophysiol 103:2544–2556

    Article  CAS  Google Scholar 

  • Sanchez-Panchuelo RM, Besle J, Beckett A, Bowtell R, Schluppeck D, Francis S (2012) Within-digit functional parcellation of brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 Tesla. J Neurosci 32:15815–15822

    Article  CAS  Google Scholar 

  • Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2014) Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex. Neuroimage 93:221–230

    Article  Google Scholar 

  • Schellekens W, Petridou N, Ramsey NF (2018) Detailed somatotopy in primary motor and somatosensory cortex revealed by Gaussian population receptive fields. Neuroimage 1(179):337–347

    Article  Google Scholar 

  • Schweizer R, Voit D, Frahm J (2008) Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 42:28–35

    Article  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219

    Article  Google Scholar 

  • Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC (2011) Differentiation of somatosensory cortices by high-resolution fMRI at 7 T. Neuroimage 54(2):1012–1020

    Article  Google Scholar 

  • Wilson JL, Jenkinson M, de Araujo I, Kringelbach ML, Rolls ET, Jezzard P (2002) Fast, fully automated global and local magnetic field optimization for fMRI of the human brain. Neuroimage 17:967–976

    Article  Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA, (2007) Visual Field Maps in Human Cortex. Neuron 56 (2):366-383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received the financial support of both The University of Nottingham and MCTI/CNPq and FAPEG. Dr. Sanchez Panchuelo is a Leverhulme Early Career Fellow. This work was funded by the MRC grant Medical Research Council [Grant Number MR/M022722/1] and BBSRC Research Council [Grant Number BB/G008906/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene Da Rocha Amaral.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Rocha Amaral, S., Sanchez Panchuelo, R.M. & Francis, S. A Data-Driven Multi-scale Technique for fMRI Mapping of the Human Somatosensory Cortex. Brain Topogr 33, 22–36 (2020). https://doi.org/10.1007/s10548-019-00728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-019-00728-6

Keywords

Navigation