Skip to main content
Log in

Multi-Scale Neural Sources of EEG: Genuine, Equivalent, and Representative. A Tutorial Review

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

A biophysical framework needed to interpret electrophysiological data recorded at multiple spatial scales of brain tissue is developed. Micro current sources at membrane surfaces produce local field potentials, electrocorticography, and electroencephalography (EEG). We categorize multi-scale sources as genuine, equivalent, or representative. Genuine sources occur at the micro scale of cell surfaces. Equivalent sources provide identical experimental outcomes over a range of scales and applications. In contrast, each representative source distribution is just one of many possible source distributions that yield similar experimental outcomes. Macro sources (“dipoles”) may be defined at the macrocolumn (mm) scale and depend on several features of the micro sources—magnitudes, micro synchrony within columns, and distribution through the cortical depths. These micro source properties are determined by brain dynamics and the columnar structure of cortical tissue. The number of representative sources underlying EEG data depends on the spatial scale of neural tissue under study. EEG inverse solutions (e.g. dipole localization) and high resolution estimates (e.g. Laplacian, dura imaging) have both strengths and limitations that depend on experimental conditions. The proposed theoretical framework informs studies of EEG source localization, source characterization, and low pass filtering. It also facilitates interpretations of brain dynamics and cognition, including measures of synchrony, functional connections between cortical locations, and other aspects of brain complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtari M, Bryant HC, Mamelak AN, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, Sutherling WW (2000) Conductivities of three-layer human skull. Brain Topogr 13:29–42

    Article  CAS  PubMed  Google Scholar 

  • Andrew C (2000) Sensorimotor EEG rhythms and their connection to local/global neocortical dynamic theory. Behav Brain Sci 23:399–400

    Article  Google Scholar 

  • Andrew C, Pfurtscheller G (1997) On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett 222:103–106

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C (2018) International Federation of Clinical Neurophysiology (IFCN) guidelines for topographic and frequency analysis of resting state electroencephalographic rhythms. Clin Neurophysiol 129:e208

    Article  Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Fattorini L, Onaratti P, Urbano A (1996) Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephal Clin Neurophysiol 98:204–215

    Article  Google Scholar 

  • Cadusch PJ, Breckon W, Silberstein RB (1992) Spherical splines and the interpolation, deblurring, and transformation of topographic EEG data. Brain Topogr 5:59

    Article  Google Scholar 

  • Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cog Sci 14:506–515

    Article  Google Scholar 

  • Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci USA 107:17356–17361

    Article  PubMed  Google Scholar 

  • Ciulla C, Takeda T, Endo H (1999) MEG Characterization of spontaneous alpha rhythm in the human brain. Brain Top 11:211–222

    Article  CAS  Google Scholar 

  • Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy JG, Schomer DL (1990) MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 28:811–817

    Article  CAS  PubMed  Google Scholar 

  • Cole K (1968) Membranes, ions and impulses. University of California Press, Berkeley

    Google Scholar 

  • Cooper R, Winter AL, Crow HJ, Walter WG (1965) Comparison of subcortical, cortical, and scalp activity using chronically indwelling electrodes in man. Electroencephal Clin Neurophysiol 18:217–228

    Article  CAS  Google Scholar 

  • Cuffin BN, Cohen D, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy J, Schomer D (1991) Tests of EEG localization accuracy using implanted sources in the human brain. Ann Neurol 29:32–38

    Article  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cog Neurosci 5:162–176

    Article  CAS  Google Scholar 

  • Davis L Jr, de No L R (1947) Contribution to the mathematical theory of the electrotonus. In: A study of nerve physiology. Rockefeller Institute for Medical Research 131, New York, pp. 442–496

    Google Scholar 

  • Delucchi MR, Garoutte B, Aird RB (1962) The scalp as an electroencephalographic averager. Electroencephal Clin Neurophysiol 14:191–196

    Article  CAS  Google Scholar 

  • Deng S, Winter W, Thorpe S, Srinivasan R (2012) Improved surface Laplacian estimates of cortical potential using realistic models of head geometry. IEEE Trans Biomed Eng 59:2979–2985

    Article  PubMed  Google Scholar 

  • Driscoll DA (1970) An investigation of a theoretical model of the human head with application to current flow calculations and EEG interpretation. Ph.D. Dissertation, University of Vermont

  • Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14:470–483

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Tononi GA (2000) A universe of consciousness. Basic Books, New York

    Google Scholar 

  • Ferree T, Eriksen K, Tucker D (2000) Regional head tissue conductivity estimation for improved EEG analysis. IEEE Trans Biomed Eng 47:1584–1592

    Article  CAS  PubMed  Google Scholar 

  • Fiederer LDJ, Vorwerke J, Lucka F, Dannhauer M, Yang S, Dümpelmann M, Schulze-Bonhage A, Aertsen A, Speck O, Wolters CH, Ball T (2016) The role of blood vessels in high-resolution volume conductor head modeling of EEG. NeuroImage 128:193–208

    Article  CAS  PubMed  Google Scholar 

  • Flick J, Bickford RG, Nunez PL (1977) Average evoked potentials from brain fiber tracts—a volume conduction model. Proc San Diego Biomed Symp 16:281–284

    Google Scholar 

  • Gevins AS, Le J, Martin N, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial enhancement, and MRI integration methods. Electroencephal Clin Neurophysiol 90:337–358

    Article  CAS  Google Scholar 

  • Gevins AS, Smith ME, McEvoy L, Yu D (1997) High-resolution mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385

    Article  CAS  PubMed  Google Scholar 

  • Goncalves SI, de Munck JC, Verbunt JPA, Bijma F, Heethaar RM, Lopes da Silva FH (2003) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Transactions on Biomed Eng 50:754–767

    Article  Google Scholar 

  • Hamaleinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Physics 65:413:497

    Article  Google Scholar 

  • Hjorth B (1975) An on line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephal Clin Neurophysiol 39::526–530

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiology 117:517–544

    Article  Google Scholar 

  • Jackson JD (1976) Classical electrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  • Jasper HD, Penfield W (1949) Electrocorticograms in man. Effects of voluntary movement upon the electrical activity of the precentral gyrus. Archiv Fur Psychiatrie Zeitschrift Neurologie 183:163–174

    Google Scholar 

  • Kayser J, Tenke CE (2015) Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: a tutorial review. Int J Psychophysiol 97:189–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer MA, Szeri AJ (2004) Quantitative approximation of the cortical surface potential from EEG and ECoG measurements. IEEE Trans Biomed Eng 51:1358–1365

    Article  PubMed  Google Scholar 

  • Lai Y, van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465

    Article  CAS  PubMed  Google Scholar 

  • Law SK (1993) Thickness and resistivity variations over the upper surface of human skull. Brain Topogr 3:99–109

    Article  Google Scholar 

  • Law SK, Nunez PL, Wijesinghe R (1993) High resolution EEG using spline generated surface Laplacians on spherical and ellipsoidal surfaces. IEEE Trans Biomed Eng 40:145–153

    Article  CAS  PubMed  Google Scholar 

  • Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephal Clin Neurophysiol 107:159–173

    Article  CAS  Google Scholar 

  • Liu Z, Ding L, He B (2006) Integration of EEG/MEG with MRI and fMRI in functional neuroimaging. IEEE Eng Med Biol Mag 25:46–53

    PubMed  PubMed Central  Google Scholar 

  • Lübbig H (ed) (1996) The inverse problem: symposium ad memoriam Hermann von Helmholtz. Wiley, Weinheim

    Google Scholar 

  • Mahjoory K, Nikulin VV, Botrel L, Linkenkaer-Hansen K, Fato MM, Haufe S (2017) Consistency of EEG source localization and connectivity estimates. NeuroImage 152:590–601

    Article  PubMed  Google Scholar 

  • Malmuvino J, Plonsey R (1995) Bioelectromagetism. Oxford University Press, New York

    Google Scholar 

  • Michael W, Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390

    Article  CAS  Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Academic Press, New York

    Google Scholar 

  • Nicholson C (2001) Diffusion and related transport mechanisms in brain tissue. Reports on Prog Physics 64:815–884

    Article  CAS  Google Scholar 

  • Nilsson JW (1986) Electric circuits. Addison-Wesley, Reading, MA

    Google Scholar 

  • Nunez PL (1974) Wavelike properties of the alpha rhythm. IEEE Trans Biomed Eng 21:473–482

    Article  Google Scholar 

  • Nunez PL (1981) Electric fields of the brain: the neurophysics of EEG, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Nunez PL (1987) A method to estimate local skull resistance in living subjects. IEEE Trans Biomed Eng 34:902–904

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL (1989) Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topogr 1:199–215

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  • Nunez PL (2010a) REST: a good idea but not the gold standard. Clin Neurophysiol 121:2177–2180

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez PL (2010b) Brain, mind, and the structure of reality. Oxford University Press, New York

    Book  Google Scholar 

  • Nunez PL (2011) A brief history of the EEG surface Laplacian. http://ssltool.sourceforge.net/history.html

  • Nunez PL (2012) Electric and magnetic fields produced by brain sources. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces for communication and control. Oxford University Press, New York, pp 45–63

    Google Scholar 

  • Nunez PL (2016) The new science of consciousness: exploring the complexity of brain, mind, and self, amherst. Prometheus Books, New York

    Google Scholar 

  • Nunez PL, Silberstein RB (2000) On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr 13:79–96

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Nunez PL, Srinivasan R (2010) Scale and frequency chauvinism in brain dynamics: too much emphasis on gamma band oscillations. Brain Struct Funct 215:67–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez PL, Srinivasan R (2014) Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease. Brain Res 1542:138–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez PL, Pilgreen KL, Westdorp AF, Law SK, Nelson AV (1991) A visual study of surface potentials and Laplacians due to distributed neocortical sources: computer simulations and evoked potentials. Brain Topogr 2:151–168

    Article  Google Scholar 

  • Nunez PL, Silberstein RB, Cadusch PJ, Wijesinghe RS, Westdorp AF, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephal Clin Neurophysiol 90:40–57

    Article  CAS  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherence I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephal Clin Neurophysiol 103:516–527

    Article  Google Scholar 

  • Nunez PL, Silberstein RB, Shi Z, Carpenter MR, Srinivasan R, Tucker DM, Doran SM, Cadusch PJ, Wijesinghe RS (1999) EEG coherence II: experimental comparisons of multiple measures. Clin Neurophysiol 110:469–486

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial-temporal structure of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapp 13:125–164

    Article  CAS  Google Scholar 

  • Nunez PL, Srinivasan R, Fields RD (2015) EEG functional connectivity, axon delays and white matter disease. Clin Neurophysiol 126:110–120

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagnetism 1:75–86

    Google Scholar 

  • Pascual-Marqui RD, Gonzalez-Andino SL, Valdes-Sosa PA (1988) Current source density estimation and interpolation based on the spherical harmonic Fourier expansion. Int J Neurosci 43:237–249

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, & Co., Boston

    Book  Google Scholar 

  • Perrin F, Bertrand O, Pernier J (1987) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34:283–289

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Echalier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephal Clin Neurophysiol 72:184–187

    Article  CAS  Google Scholar 

  • Pfurtscheller G, Cooper R (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephal Clin Neurophysiol 38:93–96

    Article  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event related EEG/MEG synchronization and desynchronization: basic principles. Electroencephal Clin Neurophysiol 110:1842–1857

    Article  CAS  Google Scholar 

  • Plonsey R (1968) Bioelectric phenomena. McGraw Hill, New York

    Google Scholar 

  • Polk C, Postow E (1986) CRC handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton

    Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R (2012) Pitfalls in the dipolar model for the neocortical EEG sources. J Neurophysiol 108:956–975

    Article  PubMed  Google Scholar 

  • Rush S, Driscoll DA (1969) EEG electrode sensitivity: an application of reciprocity. IEEE Trans Biomed Eng 16:15–22

    Article  CAS  PubMed  Google Scholar 

  • Russell GS, Srinivasan R, Tucker DM (1998) Bayesian estimates of error bounds for EEG source imaging. IEEE Trans Med Imaging 17:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Russell GS, Eriksen JK, Poolman P, Luu P, Tucker DM (2005) Geodesic photogrammetry for localizing sensor positions in dense-array EEG. Clin Neurophysiol 116:1130–1140

    Article  PubMed  Google Scholar 

  • Salmelin R, Hari R (1994) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephal Clin Neurophysiol 91:237–248

    Article  CAS  Google Scholar 

  • Scherg M, von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephal Clin Neurophysiol/Evoked Potentials Sect 62:32–44

    Article  CAS  Google Scholar 

  • Schomer DL, Lopes da Silva FH (eds) (2018) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields, 7th edn. Oxford University Press, London

    Google Scholar 

  • Silberstein RB (1995) Steady-state visually evoked potentials, brain resonances, and cognitive processes. In: Nunez PL (ed) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford, pp 272–303

    Google Scholar 

  • Sporns O (2011) Networks of the brain. MIT Press, Cambridge

    Google Scholar 

  • Srinivasan R (1999) Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clin Neurophysiol 110:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ (1996) Spatial sampling and filtering of EEG with spline-Laplacians to estimate cortical potentials. Brain Topogr 8:355–366

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 45:814–825

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Russell DP, Edelman GM, Tononi G (1999) Frequency tagging competing stimuli in binocular rivalry reveals increased synchronization of neuromagnetic responses during conscious perception. J Neurosci 19:5435–5448

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Winter WR, Ding J, Nunez PL (2007) EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166:41–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Thorpe S, Nunez PL (2013) Top-down influences on local networks: basic theory with experimental implications. Front Compu Neurosci 7:29

    Article  Google Scholar 

  • Szentagothai J (1978) The neural network of the cerebral cortex: a functional interpretation. Proc R Soc Lond [Biol] B201:219–248

    Google Scholar 

  • Szentagothai J (1987) Architectectonics, modular, of neural centers. In: Adelman G (ed) Encyclopedia of neuroscience, vol. I. Birkhauser, Boston, pp 74–77

    Google Scholar 

  • Uutela K, Hämäläinen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180

    Article  CAS  PubMed  Google Scholar 

  • Wadman WJ, Lopes da Silva FH (2018) Biophysical aspects of EEG and MEG generation. In: Schomer DL, Lopes da Silva FH (eds) Niedermeyer’s Electroencephalography, 7th ed. Oxford University Press, Oxford, pp 89–103

    Google Scholar 

  • Walter WG (1950) Normal rhythms—their development, distribution, and significance in electroencephalography. In: Hill D, Parr G (eds) A symposium on its various aspects. Macdonald, Oxford, pp. 203–227

    Google Scholar 

  • Wingeier BM (2004) A high resolution study of coherence and spatial spectra in human EEG. Ph.D. Dissertation, Tulane University

Download references

Acknowledgements

The authors would like to thank members of the IFCN Workshop, and especially its leader, Claudio Babiloni for extended and useful discussions of EEG issues. Comments by the anonymous reviewers and Ed Kelly were also very helpful. This research was supported by National Institutes of Health of the United States Grant 2R01MH68004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Nunez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christoph M. Michel.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunez, P.L., Nunez, M.D. & Srinivasan, R. Multi-Scale Neural Sources of EEG: Genuine, Equivalent, and Representative. A Tutorial Review. Brain Topogr 32, 193–214 (2019). https://doi.org/10.1007/s10548-019-00701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-019-00701-3

Keywords

Navigation