Skip to main content

Advertisement

Log in

Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleman-Gomez Y, Melie-García L, Valdés-Hernandez P (2006) IBASPM: toolbox for automatic parcellation of brain structures. In: 12th Annual Meeting of the Organization for Human Brain Mapping, vol 1

  • Alexander GE et al (2012) Gray matter network associated with risk for Alzheimer’s disease in young to middle-aged adults. Neurobiol Aging 33:2723–2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in. Adv Aging Neuron 56:924–935

    CAS  Google Scholar 

  • Baggio HC, Segura B, Junque C, de Reus MA, Sala-Llonch R, Van den Heuvel MP (2015) Rich club organization and cognitive performance in healthy older participants. J Cogn Neurosci 27(9):1801–1810

    Article  PubMed  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523

    Article  PubMed  Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 18:32–42

    Article  PubMed  CAS  Google Scholar 

  • Chang Y-T et al. (2016) Prefrontal lobe brain reserve capacity with resistance to higher global amyloid load and white matter hyperintensity burden in mild stage Alzheimer’s disease. PLoS ONE 11:e0149056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from. MRI Cerebral Cortex 18:2374–2381

    Article  PubMed  Google Scholar 

  • Chen ZJ, He Y, Rosa-Neto P, Gong G, Evans AC (2011) Age-related alterations in the modular organization of structural cortical network by using cortical thickness from. MRI Neuroimage 56:235–245

    Article  PubMed  Google Scholar 

  • Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  CAS  Google Scholar 

  • Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences. Routledge, New York

    Book  Google Scholar 

  • Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110–115

    Article  CAS  Google Scholar 

  • Damoiseaux J et al (2008) Reduced resting-state brain activity in the “default network” normal aging. Cerebral Cortex 18:1856–1864

    Article  PubMed  CAS  Google Scholar 

  • Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 37:384–400

    Article  PubMed  Google Scholar 

  • Ferrer I, Blanco R, Carulla M, Condom M, Alcantara S, Olive M, Planas A (1995) Transforming growth factor-α immunoreactivity in the developing and adult brain. Neuroscience 66:189–199

    Article  PubMed  CAS  Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99:7821–7826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age-and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong G, He Y, Chen ZJ, Evans AC (2012) Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage 59:1239–1248

    Article  PubMed  Google Scholar 

  • Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25:391–401

    Article  PubMed  Google Scholar 

  • Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736

    Article  PubMed  Google Scholar 

  • Guimera R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech 2005:P02001

    Article  PubMed Central  Google Scholar 

  • Guimera R, Mossa S, Turtschi A, Amaral LN (2005) The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci 102:7794–7799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han S-H, Lee M-A, An SS, Ahn S-W, Youn YC, Park K-Y (2014) Diagnostic value of Alzheimer’s disease-related individual structural volume measurements using IBASPM. J Clin Neurosci 21:2165–2169

    Article  PubMed  Google Scholar 

  • Hasan KM (2009) A questionable gold standard for Hippocampus volume asymmetry. Neuroradiol 51:201–202

    Article  Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from. MRI Cerebral Cortex 17:2407–2419

    Article  PubMed  Google Scholar 

  • Indefrey P, Brown CM, Hellwig F, Amunts K, Herzog H, Seitz RJ, Hagoort P (2001) A neural correlate of syntactic encoding during speech production. Proc Natl Acad Sci 98:5933–5936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Grady CL, Habak C, Wilson HR, Moscovitch M (2011) Face processing changes in normal aging revealed by fMRI adaptation. J Cogn Neurosci 23:3433–3447

    Article  PubMed  Google Scholar 

  • Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617 e611–617 e619

    Article  Google Scholar 

  • Li X, Pu F, Fan Y, Niu H, Li S, Li D (2013) Age-related changes in brain structural covariance networks. Front Hum Neurosci 7:98

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Ke L, Liu H, Huang W, Hu Z (2014) Changes in topological organization of functional PET brain network with normal aging. PLoS ONE 9:e88690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci 97:4398–4403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Cross-sectional MRI data in young, middle aged, nondemented and demented older adults. Cogn Neurosci 19:1489–1507

    Article  Google Scholar 

  • Matsuda H (2013) Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging Dis 4:29

    PubMed  Google Scholar 

  • McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299

    Article  PubMed  Google Scholar 

  • Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  • Montembeault M et al (2012) The impact of aging on gray matter structural covariance networks. Neuroimage 63:754–759

    Article  PubMed  Google Scholar 

  • Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414

    Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    PubMed  CAS  Google Scholar 

  • Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104

    Article  CAS  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  CAS  Google Scholar 

  • O’Sullivan M, Jones DK, Summers P, Morris R, Williams S, Markus H (2001) Evidence for cortical “disconnection” as a mechanism of age-related. cognitive decline. Neurology 57:632–638

    Article  PubMed  Google Scholar 

  • Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731

    Article  PubMed  Google Scholar 

  • Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74:016110

    Article  CAS  Google Scholar 

  • Reid AT et al. (2016) A seed-based cross-modal comparison of brain connectivity measures. Brain Struct Funct 222:1–21

    Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  • Shafto MA, Burke DM, Stamatakis EA, Tam PP, Tyler LK (2007) On the tip-of-the-tongue: neural correlates of increased word-finding failures in normal aging. J Cogn Neurosci 19:2060–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi F, Wang L, Peng Z, Wee C-Y, Shen D (2013) Altered modular organization of structural cortical networks in children with autism. PLoS ONE 8:e63131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  PubMed  CAS  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2:e1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Tae WS, Kim SS, Lee KU, Nam E-C, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50:569

    Article  PubMed  Google Scholar 

  • Thompson PM et al (2001) Genetic influences on brain structure. Nat Neurosci 4:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Tomasi D, Volkow ND (2012) Aging functional brain networks. Mol Psychiatry 17:549–558

    Article  Google Scholar 

  • Toussaint P-J, Maiz S, Coynel D, Messé A, Perlbarg V, Habert MO, Benali H (2011) Characterization of the default mode functional connectivity in normal aging and Alzheimer’s disease: an approach combining entropy-based and graph theoretical measurements. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, pp 853–856

  • Tzarouchi LC, Astrakas LG, Zikou A, Xydis V, Kosta P, Andronikou S, Argyropoulou MI (2009) Periventricular leukomalacia in preterm children: assessment of grey and white matter and cerebrospinal fluid changes by MRI. Pediatr Radiol 39:1327

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature-London 385:313–318

    Article  PubMed  Google Scholar 

  • Van Den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel MP et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70:783–792. https://doi.org/10.1001/jamapsychiatry.2013.1328

    Article  PubMed  Google Scholar 

  • Wang Z, Dai Z, Gong G, Zhou C, He Y (2014) Understanding structural-functional relationships in the human brain a large-scale network perspective. Neuroscientist 21(3):290–305

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world.’networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Wu K et al (2012) Age-related changes in topological organization of structural brain networks in healthy individuals. Hum Brain Mapp 33:552–568

    Article  PubMed  CAS  Google Scholar 

  • Wu K et al (2013) Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PLoS ONE 8:e55347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8:e68910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita K et al (2011) Volumetric asymmetry and differential aging effect of the human caudate nucleus in normal individuals: a prospective MR imaging study. J Neuroimag 21:34–37

    Article  Google Scholar 

  • Yan C et al (2011) Sex-and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458

    Article  PubMed  Google Scholar 

  • Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive. first-episode major depressive disorder. Biol Psychiatry 70:334–342

    Article  PubMed  Google Scholar 

  • Zhu W, Wen W, He Y, Xia A, Anstey KJ, Sachdev P (2012) Changing topological patterns in normal aging using large-scale structural networks. Neurobiol Aging 33:899–913

    Article  PubMed  Google Scholar 

  • Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci 107:18191–18196

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the medical suggestions of Doctor Jiechuan Ren from Tiantan Hospital.

Funding

This research was partly supported by Beijing Nova Program (Z161100004916157), National Natural Science Foundation of China (81101107, 31640035 and 71661167001), Natural Science Foundation of Beijing (4162008), and Beijing Municipal Education Commission (PXM2017_014204_500012).

Author information

Authors and Affiliations

Authors

Contributions

WL and CY have made substantial contributions to the design of the work and analysis of data for the work; YN and XZ have made contributions to the analysis of data for the work. WL has drafted the work; CY and FS have revised it critically for important intellectual content. QW, WSL, and SL have provided related medical suggestions. CY and SW have provided all the equipment for conducting the experiment. All the authors have provided the final approval of the version to be published. All the authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Chunlan Yang.

Ethics declarations

Conflict of interest

All the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

The data employed in the present study was obtained from Open Access Series of Imaging Studies (OASIS), which is a project aimed at making MRI data sets of the brain freely available to the scientific community. OASIS is made available by the Washington University Alzheimer’s Disease Research Center, Dr. Randy Buckner at the Howard Hughes Medical Institute (HHMI) at Harvard University, the Neuroinformatics Research Group (NRG) at Washington University School of Medicine, and the Biomedical Informatics Research Network (BIRN).

Additional information

Handling Editor: Pedro Valdes-Sosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, C., Shi, F. et al. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM. Brain Topogr 31, 577–590 (2018). https://doi.org/10.1007/s10548-018-0642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0642-y

Keywords

Navigation