Heart–Brain Interactions in the MR Environment: Characterization of the Ballistocardiogram in EEG Signals Collected During Simultaneous fMRI

  • Marco Marino
  • Quanying Liu
  • Mariangela Del Castello
  • Cristiana Corsi
  • Nicole Wenderoth
  • Dante Mantini
Original Paper
  • 21 Downloads

Abstract

The ballistocardiographic (BCG) artifact is linked to cardiac activity and occurs in electroencephalographic (EEG) recordings acquired inside the magnetic resonance (MR) environment. Its variability in terms of amplitude, waveform shape and spatial distribution over subject’s scalp makes its attenuation a challenging task. In this study, we aimed to provide a detailed characterization of the BCG properties, including its temporal dependency on cardiac events and its spatio-temporal dynamics. To this end, we used high-density EEG data acquired during simultaneous functional MR imaging in six healthy volunteers. First, we investigated the relationship between cardiac activity and BCG occurrences in the EEG recordings. We observed large variability in the delay between ECG and subsequent BCG events (ECG–BCG delay) across subjects and non-negligible epoch-by-epoch variations at the single subject level. The inspection of spatial–temporal variations revealed a prominent non-stationarity of the BCG signal. We identified five main BCG waves, which were common across subjects. Principal component analysis revealed two spatially distinct patterns to explain most of the variance (85% in total). These components are possibly related to head rotation and pulse-driven scalp expansion, respectively. Our results may inspire the development of novel, more effective methods for the removal of the BCG, capable of isolating and attenuating artifact occurrences while preserving true neuronal activity.

Keywords

Ballistocardiogram (BCG) Inter-trial variability Non-stationarity EEG–fMRI Multimodal imaging 

Notes

Acknowledgements

The authors would like to thank Stefan Debener and the anonymous reviewers of the manuscript for their insightful comments and suggestions, and Ronald Peeters, René Clerckx and Paul Meugens for their helpful advice and support on EEG–fMRI integration. The work was supported by the KU Leuven Special Research Fund (Grant C16/15/070), and the Research Foundation Flanders (FWO) (Grants G0F76.16N, G0936.16N and EOS. 30446199).

Supplementary material

10548_2018_631_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2610 KB)

References

  1. Abreu R, Leite M, Jorge J, Grouiller F, van der Zwaag W, Leal A, Figueiredo P (2016) Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG–fMRI. Neuroimage 135:45–63.  https://doi.org/10.1016/j.neuroimage.2016.03.034 CrossRefPubMedGoogle Scholar
  2. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8(3):229–239.  https://doi.org/10.1006/nimg.1998.0361 CrossRefPubMedGoogle Scholar
  3. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–239.  https://doi.org/10.1006/nimg.2000.0599 CrossRefPubMedGoogle Scholar
  4. Assecondi S, Hallez H, Staelens S, Bianchi AM, Huiskamp GM, Lemahieu I (2009) Removal of the ballistocardiographic artifact from EEG–fMRI data: a canonical correlation approach. Phys Med Biol 54(6):1673–1689.  https://doi.org/10.1088/0031-9155/54/6/018 CrossRefPubMedGoogle Scholar
  5. Bonmassar G, Purdon PL, Jaaskelainen IP, Chiappa K, Solo V, Brown EN, Belliveau JW (2002) Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI. Neuroimage 16(4):1127–1141CrossRefPubMedGoogle Scholar
  6. Comon P (1994) Independent component analysis: a new concept? Sig Process 36:287–314CrossRefGoogle Scholar
  7. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–11737.  https://doi.org/10.1523/JNEUROSCI.3286-05.2005 CrossRefPubMedGoogle Scholar
  8. Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK, Goebel R (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage 34(2):587–597.  https://doi.org/10.1016/j.neuroimage.2006.09.031 CrossRefPubMedGoogle Scholar
  9. Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67(3):189–199.  https://doi.org/10.1016/j.ijpsycho.2007.05.015 CrossRefPubMedGoogle Scholar
  10. Debener S, Kranczioch C, Gutberlet I (2009) EEG quality: origin and reduction of the EEG cardiac-related artefact. In: Mulert C, Lemieux L (eds) EEG–fMRI. Springer, BerlinGoogle Scholar
  11. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 CrossRefPubMedGoogle Scholar
  12. Grouiller F, Jorge J, Pittau F, van der Zwaag W, Iannotti GR, Michel CM, Vuilliemoz S, Vargas MI, Lazeyras F (2016). Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field: feasibility and first results. Magma 29(3):605 – 616CrossRefPubMedGoogle Scholar
  13. Iannotti GR, Pittau F, Michel CM, Vulliemoz S, Grouiller F (2015) Pulse artifact detection in simultaneous EEG–fMRI recording based on EEG map topography. Brain Topogr 28(1):21–32.  https://doi.org/10.1007/s10548-014-0409-z CrossRefPubMedGoogle Scholar
  14. Krishnaswamy P, Bonmassar G, Poulsen C, Pierce ET, Purdon PL, Brown EN (2016) Reference-free removal of EEG–fMRI ballistocardiogram artifacts with harmonic regression. NeuroImage 128:398–412CrossRefPubMedGoogle Scholar
  15. LeVan P, Maclaren J, Herbst M, Sostheim R, Zaitsev M, Hennig J (2013) Ballistocardiographic artifact removal from simultaneous EEG–fMRI using an optical motion-tracking system. NeuroImage 75:1–11CrossRefPubMedGoogle Scholar
  16. Liu Q, Balsters JH, Baechinger M, van der Groen O, Wenderoth N, Mantini D (2015) Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model. J Neural Eng 12(5):056012CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Gratta D, C (2007a) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34(2):598–607.  https://doi.org/10.1016/j.neuroimage.2006.09.037 CrossRefPubMedGoogle Scholar
  18. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007b) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175.  https://doi.org/10.1073/pnas.0700668104 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mantini D, Marzetti L, Corbetta M, Romani GL, Del Gratta C (2010) Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks. Brain Topogr 23(2):150–158CrossRefPubMedPubMedCentralGoogle Scholar
  20. Masterton RA, Abbott DF, Fleming SW, Jackson GD (2007) Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage 37(1):202–211.  https://doi.org/10.1016/j.neuroimage.2007.02.060 CrossRefPubMedGoogle Scholar
  21. McAvoy M, Mitra A, Tagliazucchi E, Laufs H, Raichle ME (2017) Mapping visual dominance in human sleep. NeuroImage 150:250–261CrossRefGoogle Scholar
  22. Mullinger KJ, Havenhand J, Bowtell R (2013) Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. Neuroimage 71:75–83.  https://doi.org/10.1016/j.neuroimage.2012.12.070 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Müri RM, Felblinger J, Rosler KM, Jung B, Hess CW, Boesch C (1998) Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magn Reson Med 39(1):18–22CrossRefPubMedGoogle Scholar
  24. Nakamura W, Anami K, Mori T, Saitoh O, Cichocki A, Amari S (2006) Removal of ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using independent component analysis. IEEE Trans Biomed Eng 53(7):1294–1308.  https://doi.org/10.1109/TBME.2006.875718 CrossRefPubMedGoogle Scholar
  25. Neuner I, Arrubla J, Felder J, Shah NJ (2014). Simultaneous EEG–fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. Neuroimage 102:71–79CrossRefGoogle Scholar
  26. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28(3):720–737.  https://doi.org/10.1016/j.neuroimage.2005.06.067 CrossRefPubMedGoogle Scholar
  27. Oh SS, Han Y, Lee J, Yun SD, Kang JK, Lee EM, Yoon HW, Chung JY, Park H (2014) A pulse artifact removal method considering artifact variations in the simultaneous recording of EEG and fMRI. Neurosci Res 81–82:42–50.  https://doi.org/10.1016/j.neures.2014.01.008 CrossRefPubMedGoogle Scholar
  28. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  29. Srivastava G, Crottaz-Herbette S, Lau KM, Glover GH, Menon V (2005) ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. Neuroimage 24(1):50–60.  https://doi.org/10.1016/j.neuroimage.2004.09.041 CrossRefPubMedGoogle Scholar
  30. Vanderperren K, De Vos M, Ramautar JR, Novitskiy N, Mennes M, Assecondi S et al (2010) Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage 50(3):920–934.  https://doi.org/10.1016/j.neuroimage.2010.01.010 CrossRefPubMedGoogle Scholar
  31. Yan WX, Mullinger KJ, Geirsdottir GB, Bowtell R (2010) Physical modeling of pulse artefact sources in simultaneous EEG/fMRI. Hum Brain Mapp 31(4):604–620.  https://doi.org/10.1002/hbm.20891 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neural Control of Movement LaboratoryETH ZurichZurichSwitzerland
  2. 2.Department of Experimental PsychologyUniversity of OxfordOxfordUK
  3. 3.Laboratory of Movement Control and NeuroplasticityKU LeuvenLouvainBelgium
  4. 4.Department of Electrical, Electronic, and Information Engineering “Gugliemo Marconi”University of BolognaBolognaItaly

Personalised recommendations