Brain Topography

, Volume 31, Issue 3, pp 447–467 | Cite as

Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other’s Action Intention

  • Li Zhang
  • John Q. Gan
  • Wenming Zheng
  • Haixian Wang
Original Paper


In action intention understanding, the mirror system is involved in perception–action matching process and the mentalizing system underlies higher-level intention inference. By analyzing the dynamic functional connectivity in α (8–12 Hz) and β (12–30 Hz) frequency bands over a “hand–cup interaction” observation task, this study investigates the topological transition from the action observation network (AON) to the mentalizing network (MZN), and estimates their functional relevance for intention identification from other’s different action kinematics. Sequential brain microstates were extracted based on event-related potentials (ERPs), in which significantly differing neuronal responses were found in N170–P200 related to perceptually matching kinematic profiles and P400–700 involved in goal inference. Inter-electrode weighted phase lag index analysis on the ERP microstates revealed a shift of hub centrality salient in α frequency band, from the AON dominated by left-lateral frontal–premotor–temporal and temporal–parietooccipital synchronizations to the MZN consisting of more bilateral frontal–parietal and temporal–parietal synchronizations. As compared with usual actions, intention identification of unintelligible actions induces weaker synchronizations in the AON but dramatically increased connectivity in right frontal–temporal–parietal regions of the MZN, indicating a spatiotemporally complementary effect between the functional network configurations involved in mirror and mentalizing processes. Perceptual processing in observing usual/unintelligible actions decreases/increases requirements for intention inference, which would induce less/greater functional network reorganization on the way to mentalization. From the comparison, our study suggests that the adaptive topological changes from the AON to the MZN indicate implicit causal association between the mirror and mentalizing systems for decoding others’ intentionality.


Action intention understanding ERP brain microstate Dynamic functional connectivity Action observation network Mentalizing network 



This work was supported in part by the National Basic Research Program of China under Grant 2015CB351704, the Natural Science Foundation of China under Grants 31600862 and 61773114, the Key Research and Development Plan (Industry Foresight and Common Key Technology) of Jiangsu Province under Grant BE2017007-3, the Support Program of Excellent Young Talents in Universities of Anhui Province under Grant gxyqZD2017064, and the Natural Science Foundation of Bengbu Medical College under Grant BYKY1604ZD.


  1. Atique B, Erb M, Gharabaghi A, Grodd W, Anders S (2011) Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. Neuroimage 55(4):1899–1911CrossRefPubMedGoogle Scholar
  2. Bassett DS, Meyerlindenberg A, Achard S, Duke T, Bullmore E (2007) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103(51):19518–19523CrossRefGoogle Scholar
  3. Becchio C, Cavallo A, Begliomini C, Sartori L, Feltrin G, Castiello U (2012) Social grasping: from mirroring to mentalizing. Neuroimage 61(1):240–248CrossRefPubMedGoogle Scholar
  4. Blakemore SJ, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2(8):561–567PubMedGoogle Scholar
  5. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory E 2008(10):P10008CrossRefGoogle Scholar
  6. Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17(24):2117–2121CrossRefPubMedGoogle Scholar
  7. Buccino G, Baumgaertner A, Colle L, Buechel C, Rizzolatti G, Binkofski F (2007) The neural basis for understanding non-intended actions. Neuroimage 36:T119–T127CrossRefPubMedGoogle Scholar
  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefPubMedGoogle Scholar
  9. Cacioppo S, Cacioppo JT (2015) Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging, part ii: a step-by-step tutorial. J Neurosci Meth 256:184–197CrossRefGoogle Scholar
  10. Cacioppo S, Weiss RM, Runesha HB, Cacioppo JT (2014) Dynamic spatiotemporal brain analyses using high performance electrical neuroimaging: theoretical framework and validation. J Neurosci Meth 238:11–34CrossRefGoogle Scholar
  11. Carrington SJ, Bailey AJ (2009) Are there theory of mind regions in the brain? a review of the neuroimaging literature. Hum Brain Mapp 30(8):2313–2335CrossRefPubMedGoogle Scholar
  12. Carter EJ, Hodgins JK, Rakison DH (2011) Exploring the neural correlates of goal-directed action and intention understanding. Neuroimage 54(2):1634–1642CrossRefPubMedGoogle Scholar
  13. Catmur C (2015) Understanding intentions from actions: direct perception, inference, and the roles of mirror and mentalizing systems. Conscious Cogn 36:426–433CrossRefPubMedGoogle Scholar
  14. Catmur C (2014) Unconvincing support for role of mirror neurons in “action understanding”: commentary on Michael et al. Front Hum Neurosci 8:553CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cavallo A, Heyes C, Becchio C, Bird G, Catmur C (2014) Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation. Soc Cogn Affect Neurosci 9(8):1082–1088CrossRefPubMedGoogle Scholar
  16. De Lange FP, Spronk M, Willems RM, Toni I, Bekkering H (2008) Complementary systems for understanding action intentions. Curr Biol 18(6):454–457CrossRefPubMedGoogle Scholar
  17. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3(5):172–178CrossRefPubMedGoogle Scholar
  18. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  19. Donchin E (1981) Surprise!… surprise? Psychophysiology 18(5):493–513CrossRefPubMedGoogle Scholar
  20. Donchin E, Ritter W, McCallum WC (1978) Cognitive psychophysiology: the endogenous components of the ERP. In: Event-related brain potentials in Man, pp 349–411Google Scholar
  21. Erdös P, Rényi A (1961) On the strength of connectedness of a random graph. Acta Math Hungar 12:261–267CrossRefGoogle Scholar
  22. Gardner T, Goulden N, Cross ES (2015) Dynamic modulation of the action observation network by movement familiarity. J Neurosci 35(4):1561–1572CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):45CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R et al (2007) Alpha phase reset contributes to the generation of ERPs. Cereb Cortex 17(1):1–8CrossRefPubMedGoogle Scholar
  25. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80(1):360–378CrossRefPubMedGoogle Scholar
  26. Johnso R, Donchin E (1978) On how P300 amplitude varies with the utility of the eliciting stimuli. Electroencephal Clin Neurophysiol 44(4):424–437CrossRefGoogle Scholar
  27. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inform Process Lett 31(1):7–15CrossRefGoogle Scholar
  28. Khanna A, Pascualleone A, Michel CM, Farzan F (2014) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113CrossRefPubMedGoogle Scholar
  29. Kitzbichler MG, Henson RN, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31(22):8259–8270CrossRefPubMedGoogle Scholar
  30. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88CrossRefPubMedGoogle Scholar
  31. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H et al (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16(1):41–48CrossRefPubMedGoogle Scholar
  32. Lacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):e79CrossRefGoogle Scholar
  33. Liew SL, Han S, Aziz-Zadeh L (2011) Familiarity modulates mirror neuron and mentalizing regions during intention understanding. Hum Brain Mapp 32(11):1986–1997CrossRefPubMedGoogle Scholar
  34. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D et al (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marsh LE, Mullett TL, Ropar D, Hamilton AF (2014) Responses to irrational actions in action observation and mentalising networks of the human brain. Neuroimage 103:81–90CrossRefPubMedGoogle Scholar
  36. Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD (2012) Evidence for social working memory from a parametric functional MRI study. Proc Natl Acad Sci USA 109(6):1883–1888CrossRefPubMedPubMedCentralGoogle Scholar
  37. Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD (2015) The functional significance of EEG microstates-associations with modalities of thinking. Neuroimage 125(104):643–656PubMedGoogle Scholar
  38. Naish KR, Houstonprice C, Bremner AJ, Holmes NP (2014) Effects of action observation on corticospinal excitability: muscle specificity, direction, and timing of the mirror response. Neuropsychologia 64:331–348CrossRefPubMedGoogle Scholar
  39. Neal A, Kilner JM (2010) What is simulated in the action observation network when we observe actions? Eur J Neurosci 32(10):1765–1770CrossRefPubMedPubMedCentralGoogle Scholar
  40. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251CrossRefGoogle Scholar
  41. Ortigue S, Thompson JC, Parasuraman R, Grafton ST (2009) Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: a combined EEG/fMRI repetition suppression paradigm. PLoS ONE 4(9):e6962CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ortigue S, Sinigaglia C, Rizzolatti G, Grafton ST (2010) Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study. PLoS ONE 5(8):e12160CrossRefPubMedPubMedCentralGoogle Scholar
  43. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670CrossRefPubMedGoogle Scholar
  45. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMedGoogle Scholar
  46. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32(5):1001–1013CrossRefPubMedGoogle Scholar
  47. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. Plos One 2(10):e1049CrossRefPubMedPubMedCentralGoogle Scholar
  48. Spunt RP, Lieberman MD (2013) The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychol Sci 24(1):80–86CrossRefPubMedGoogle Scholar
  49. Spunt RP, Satpute AB, Lieberman MD (2011) Identifying the what, why, and how of an observed action: an fMRI study of mentalizing and mechanizing during action observation. J Cogn Neurosci 23(1):63–74CrossRefPubMedGoogle Scholar
  50. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:8CrossRefGoogle Scholar
  51. Tidoni E, Candidi M (2016) Commentary: understanding intentions from actions: direct perception, inference, and the roles of mirror and mentalizing systems. Front Behav Neurosci 10(185):13PubMedPubMedCentralGoogle Scholar
  52. Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30(3):829–858CrossRefPubMedGoogle Scholar
  53. Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48(3):564–584CrossRefPubMedGoogle Scholar
  54. Van Overwalle F, Van den Eede S, Baetens K, Vandekerckhove M (2009) Trait inferences in goal-directed behavior: ERP timing and localization under spontaneous and intentional processing. Soc Cogn Affect Neurosci 4(2):177–190CrossRefPubMedPubMedCentralGoogle Scholar
  55. Van der Cruyssen L, Van Duynslaeger M, Cortoos A, Van Overwalle F (2009) ERP time course and brain areas of spontaneous and intentional goal inferences. Soc Neurosci 4(2):165–184CrossRefPubMedGoogle Scholar
  56. Vinck M, Oostenveld R, Wingerden MV, Battaglia F, Pennartz CMA (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565CrossRefPubMedGoogle Scholar
  57. Virji-Babul N, Moiseev A, Cheung T, Weeks D, Cheyne D, Ribary U (2010) Spatial-temporal dynamics of cortical activity underlying reaching and grasping. Hum Brain Mapp 31(1):160–171PubMedGoogle Scholar
  58. Vistoli D, Passerieux C, El Zein M, Clumeck C, Braun S, Brunet-Gouet E (2015) Characterizing an ERP correlate of intentions understanding using a sequential comic strips paradigm. Soc Neurosci 10(4):391–407PubMedGoogle Scholar
  59. Woodward AL, Gerson SA (2014) Mirroring and the development of action understanding. Philos Trans R Soc B 369(1644):20130181CrossRefGoogle Scholar
  60. Yamasaki T, Muranaka H, Kaseda Y, Mimori Y, Tobimatsu S (2012) Understanding the pathophysiology of alzheimer’s disease and mild cognitive impairment: a mini review on fMRI and ERP studies. Neurol Res Int 2012:719056CrossRefPubMedGoogle Scholar
  61. Yang Y, Gu G, Guo H, Qiu YH (2011) Early event-related potential components in face perception reflect the sequential neural activities. Acta Physiol Sin 63(2):97–105Google Scholar
  62. Yu Z, Kim S, Mallipeddi R, Lee M (2015) Human intention understanding based on object affordance and action classification. In: IEEE international joint conference on neural networks, pp 1–6Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Li Zhang
    • 1
  • John Q. Gan
    • 2
    • 3
  • Wenming Zheng
    • 2
  • Haixian Wang
    • 2
  1. 1.School of Medical ImagingBengbu Medical CollegeBengbuPeople’s Republic of China
  2. 2.Research Center for Learning ScienceSoutheast UniversityNanjingPeople’s Republic of China
  3. 3.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations