Brain Topography

, Volume 31, Issue 2, pp 322–336 | Cite as

Two-Dimensional Temporal Clustering Analysis for Patients with Epilepsy: Detecting Epilepsy-Related Information in EEG-fMRI Concordant, Discordant and Spike-Less Patients

  • Danilo Maziero
  • Tonicarlo R. Velasco
  • Carlos E. G. Salmon
  • Victoria L. Morgan
Original Paper


EEG acquired simultaneously with fMRI (EEG-fMRI) is a multimodal method that has shown promise in mapping the seizure onset zone in patients with focal epilepsy. However, there are many instances when this method is unsuccessful or not applicable, and other data driven fMRI methods may be utilized. One such method is the two-dimensional temporal clustering analysis (2dTCA). In this study we compared the classic EEG-fMRI and 2dTCA performance in mapping regions related to the seizure onset region in 18 focal epilepsy patients (12 presenting interictal epileptiform discharges (IEDs), during EEG-fMRI acquisition) with Engel I or II surgical outcome. Activation maps of both 2dTCA timing outputs (positive and negative histograms) and EEG detected IEDs were computed and compared to the region of epilepsy surgical resection. Patients were evaluated in three categories based on frequency of EEG detected spiking during the MRI. EEG-fMRI maps were concordant to the epilepsy region in 5/12 subjects, four with frequent IEDs on EEG. The 2dTCA was successful in mapping 13/18 patients including 3/6 with no IEDs detected (10/12 with IEDs detected). The epilepsy-related activities were successfully mapped by both methods in only 4/12 patients. This work suggests that the epilepsy-related information detected by each method may be different: while EEG-fMRI is more accurate in patients with high rather than lower numbers of EEG detected IEDs; 2dTCA can be useful in evaluating patients even when no concurrent EEG spikes are detected or EEG-fMRI is not effective. Therefore, our results support that 2dTCA might be an alternative for mapping epilepsy-related BOLD activity in negative EEG-fMRI (6/7 patients) and spike-less patients.


Epilepsy 2dTCA EEG-fMRI Interictal epileptiform discharges 



This study was supported by Grants from the National Council for Scientific and Technological Development (CNPq), Brazil. VLM is supported by the National Institute of Health (R01 NS75270), United States of America.


  1. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8(3):229–239CrossRefPubMedGoogle Scholar
  2. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage, 12:230–239CrossRefPubMedGoogle Scholar
  3. Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, Stern JM (2011) Functional MRI of sleep spindles and K-complexes. Clinical Neurophysiol 123(2):303–309CrossRefGoogle Scholar
  4. Centeno M, Carmichael DW (2014) Network connectivity in epilepsy: resting state fMRI and EEG-fMRI contributions. Front Neurol 5:93CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang C, Leopold DA, Scholvinck ML, Mandelkow H, Picchioni D, Liu X, Ye FQ, Turchi JN, Duyn JH (2016) Tracking brain arousal fluctuations with fMRI. Proc Natl Acad Sci USA 113(16):4518–4523CrossRefPubMedPubMedCentralGoogle Scholar
  6. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367CrossRefPubMedGoogle Scholar
  8. De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, Formisano E (2007) Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 34(1):177–194CrossRefPubMedGoogle Scholar
  9. Engel J Jr, Van Ness PC, Rasmussen TB, Ojemann LM (1993) Outcome with respect to epileptic seizures. In: Engel J (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 609–621Google Scholar
  10. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentralGoogle Scholar
  11. Glover GH (1999) Deconvolution of impulse response in eventrelated BOLD fMRI. Neuroimage 9:416–429CrossRefPubMedGoogle Scholar
  12. Gotman J, Kobayashi E, Bagshaw AP, Bénar CG, Dubeau F (2006) Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23(6):906–920CrossRefPubMedGoogle Scholar
  13. Grouiller F, Thornton RC, Groening K, Spinelli L, Duncan JS, Schaller K, Siniatchkin M, Lemieux L, Seeck M, Michel CM, Vulliemoz S (2011). With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain. doi: 10.1093/brain/awr156 PubMedPubMedCentralGoogle Scholar
  14. Hamandi K, Salek-Haddadi A, Fish DR, Lemieux L (2004) EEG/functional MRI in epilepsy: the Queen Square experience. J Clin Neurophysiol 21(4):241–248CrossRefPubMedGoogle Scholar
  15. Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21:1639–1651CrossRefPubMedGoogle Scholar
  16. Khatamian YB, Fahoum F, Gotman J (2011) Limits of 2D-TCA in detecting BOLD responses to epileptic activity. Epilepsy Res 94:177–188CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27:488–497CrossRefPubMedGoogle Scholar
  18. LeVan P, Gotman J (2009) Independent component analysis as a model-free approach for the detection of BOLD changes related to epileptic spikes: a simulation study. Hum Brain Mapp 30:2021–2031CrossRefPubMedPubMedCentralGoogle Scholar
  19. LeVan P, Tyvaert L, Moeller F, Gotman J (2010) Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage 49:366–378CrossRefPubMedGoogle Scholar
  20. Liu Y, Gao JH, Liu HL, Fox PT (2000) The temporal response of the brain after eating revealed by functional MRI. Nature 405(6790):1058–1062CrossRefPubMedGoogle Scholar
  21. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157CrossRefPubMedGoogle Scholar
  22. Lopes R, Lina JM, Fahoum F, Gotman J (2012) Detection of epileptic activity in fMRI without recording the EEG. Neuroimage 60:1867–1879CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mantini DMG, Del Gratta PC, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Nat Acad Sci 104(32):13170–13175Google Scholar
  24. Maziero D, Castellanos AJ, Salmon CEG, Velasco TR (2014) Comparison between different ESI methods on refractory epilepsy patients shows a high sensitivity for bayesian model averaging. J Biomed Sci Eng 7:662–674CrossRefGoogle Scholar
  25. Maziero D, Sturzbecher M, Velasco TR, Rondinoni C, Castellanos AL, Carmichael DW, Salmon CEG (2015) A comparison of independent component analysis (ICA) of fMRI and electrical source imaging (ESI) in focal epilepsy reveals misclassification using a classifier. Brain Topogr 28(6):813–831CrossRefPubMedGoogle Scholar
  26. Maziero D, Velasco TR, Hunt N, Payne E, Lemieux L, Salmon CEG, Carmichael DW (2016) Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Neuroimage 138:13–27CrossRefPubMedGoogle Scholar
  27. McKeown M, Makeig S, Brown G, Jung T, Kindermann S, Bell A, Sejnowski T (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapping 6:160–188CrossRefGoogle Scholar
  28. Moeller F, LeVan P, Gotman J (2011) Independent component analysis (ICA) of generalized spike wave discharges in fMRI: comparison with general linear model-based EEG-fMRI. Hum Brain Mapp 32:209–217CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morgan VL, Gore JC (2009) Detection of irregular, transient fMRI activity in normal controls using 2dTCA: comparison to event-related analysis using known timing. Hum Brain Mapp 30(10):3393–3405CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morgan VL, Abou-Khalil B, Gore JC (2008) Development of 2dTCA for the detection of irregular, transient BOLD activity. Hum Brain Mapp 29:57–69CrossRefPubMedPubMedCentralGoogle Scholar
  31. Morgan VL, Gore JC, Abou-Khalil B (2010) Functional epileptic network in left mesial temporal lobe epilepsy detected using resting fMRI. Epilepsy Res 88:168–178CrossRefPubMedGoogle Scholar
  32. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rodionov R, De Martino F, Laufs H, Carmichael DW, Formisano E, Walker M, Duncan J, Lemieux L (2007) Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG correlated fMRI. Neuroimage 38:488–500CrossRefPubMedGoogle Scholar
  34. Rondinoni C, Amaro JE, Cendes F, Santos AC, Salmon CEG (2013) Effect of scanner acoustic background noise on strict resting-state fMRI. Braz J Med Biol Res 46:359–367CrossRefPubMedPubMedCentralGoogle Scholar
  35. Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088(1):148–166CrossRefPubMedGoogle Scholar
  36. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22(1):158–165CrossRefPubMedGoogle Scholar
  37. Tagliazucchi E, Laufs H (2014) Decoding wakefulness levels from typical fmri resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82:695–708CrossRefPubMedGoogle Scholar
  38. Tao JX, Baldwin M (2007) Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol 24(2):96–100CrossRefPubMedGoogle Scholar
  39. Thornton R, Laufs H, Rodionov R, Cannadathu S, Carmichael DW, Vulliemoz S, Salek-Haddadi A, McEvoy AW, Smith SM, Lhatoo S, Elwes RDC, Guye M, Walker MC, Lemieux L, Duncan JS (2010) EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry 81:922–927CrossRefPubMedGoogle Scholar
  40. Velasco TR, Sakamoto AC, Alexandre V Jr, Walz R, Dalmagro CL, Bianchin MM, Araujo D, Santos AC, Leite JP, Assirati JA, Carlotti C Jr (2006) Foramen ovale electrodes can identify a focal seizure onset when surface EEG fails in mesial temporal lobe epilepsy. Epilepsia 47:1300–1307CrossRefPubMedGoogle Scholar
  41. Velasco TR, Wichert-Ana L, Mathern GW, Araujo D, Walz R, Bianchin MM, Dalmagro CL, Leite JP, Santos AC, Assirati Jr, Joao A, Carlotti CG Jr, Sakamoto AC (2011) Utility of ictal SPECT in mesial temporal lobe epilepsy with hippocampal atrophy: a randomized trial. Neurosurgery 68(2):431–436CrossRefPubMedGoogle Scholar
  42. Wong CW, Olafsson V, Tal O, Liu TT (2016) The amplitude of the resting-state fmri global signal is related to EEG vigilance measures. Neuroimage 83:983–990CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Danilo Maziero
    • 1
    • 2
    • 3
  • Tonicarlo R. Velasco
    • 3
  • Carlos E. G. Salmon
    • 2
  • Victoria L. Morgan
    • 4
  1. 1.Neuroscience & MR Research Program, Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA
  2. 2.InBrain Lab, Department of Physics, FFLCRPUniversity of São PauloRibeirão PrêtoBrazil
  3. 3.Epilepsy Surgery Center, Department of Neuroscience, Faculty of MedicineUniversity of São PauloRibeirão PrêtoBrazil
  4. 4.Institute of Imaging ScienceVanderbilt UniversityNashvilleUSA

Personalised recommendations